
SerDes Toolbox™
Reference

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

SerDes Toolbox™ Reference
© COPYRIGHT 2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2019 Online only New for Version 1.0 (Release 2019a)
September 2019 Online only Revised for Version 1.1 (Release 2019b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

SerDes System Objects — Alphabetical List
1

Blocks — Alphabetical List
2

SerDes Apps — Alphabetical List
3

iii

Contents

SerDes System Objects —
Alphabetical List

1

serdes.AGC
Automatically adjusts gain to maintain output waveform amplitude

Description
serdes.AGC System object™ applies an adaptive variable gain to the input waveform to
achieve a desired RMS output voltage. Averaging the RMS voltage over a specified
number of symbols, serdes.AGC performs automatic gain control (AGC) by increasing or
decreasing the gain, or keeping the gain constant.

To adjust the gain of the input signal:

1 Create the serdes.AGC object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
agc = serdes.AGC
agc = serdes.AGC(Name,Value)

Description
agc = serdes.AGC returns an AGC object that modifies an input waveform according to
the root-mean-squared property of the AGC block.

agc = serdes.AGC(Name,Value) returns an AGC object with each specified property
set to specific value. Unspecified properties have default values.
Example: agc = serdes.AGC('Mode',1)

1 SerDes System Objects — Alphabetical List

1-2

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Main

Mode — AGC operating mode
1 (default) | 0

AGC operating mode, specified as 0 or 1. Mode determines if the AGC adjusts the gain of
input baseband signal or acts as a pass-through.

Mode
Value

AGC Mode AGC Operation

0 Off serdes.AGC is bypassed, the input waveform remains
unchanged.

1 On serdes.AGC adjusts gain of input waveform to maintain
TargetRMSVoltage in the output waveform.

Data Types: double

TargetRMSVoltage — Desired RMS voltage of output waveform
0.3 (default) | nonnegative real scalar in the range [0, 10]

Desired RMS voltage of the output waveform, specified as a nonnegative real scalar in the
range [0, 10] in volts. Setting the TargetRMSVoltage to 0 results in an all zero output.
Data Types: double

Advanced

SymbolTime — Time of single symbol duration
1e-10 (default) | positive real scalar

Time of a single symbol duration, specified as a positive real scalar in seconds.

 serdes.AGC

1-3

Data Types: double

SampleInterval — Uniform time step of waveform
6.25e-12 (default) | positive real scalar

Uniform time step of the waveform, specified as a real positive scalar in seconds.
Data Types: double

Modulation — Modulation scheme
2 (default) | 4

Modulation scheme, specified as 2 or 4.

Modulation Value Modulation Scheme
2 Non-return to zero (NRZ)
4 Four-level pulse amplitude modulation (PAM4)

Data Types: double

MaxGain — Maximum allowed AGC gain
10 (default) | positive real scalar

Maximum allowed AGC gain, specified as a positive real scalar. MaxGain provides a stable
startup of the adaptive algorithm.
Data Types: double

AveragingLength — Averaging length for RMS calculation
100 (default) | positive real integer

Averaging length, specified as a positive real integer. AveragingLength defines the
number of symbol over which the RMS calculation of the input signal is made.
Data Types: double

WaveType — Input wave type form
'Sample' (default) | 'Impulse' | 'Waveform'

Input wave type form:

• 'Sample' — A sample-by-sample input signal.

1 SerDes System Objects — Alphabetical List

1-4

• 'Impulse' — An impulse response input signal.
• 'Waveform' — A bit-pattern waveform type of input signal, such as pseudorandom

binary sequence (PRBS).

Data Types: char

Usage

Syntax
y = agc(x)

Description
y = agc(x)

Input Arguments
x — Input baseband signal
scalar | vector

Input baseband signal. If the WaveType is set to 'Sample', the input signal is a sample-
by-sample signal specified as a scalar. If the WaveType is set to 'Impulse', the input
signal is an impulse response vector signal.

Output Arguments
y — Gain adjusted output signal
scalar | vector

Gain adjusted output signal. If the input signal is a sample-by-sample signal specified as a
scalar, the output is also scalar. If the input signal is an impulse response vector signal,
the output is also a vector.

 serdes.AGC

1-5

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Generating Constant Level Output Signal

Use a serdes.AGC system object™ to reduce the amplitude of a waveform signal to
maintain an rms voltage of 0.25 V.

Create a signal with two sinusoids, one at 250 Hz, and the other at 340 Hz. The sampling
frequency is 800 Hz. The signal is corrupted with additive zero-mean random noise.

Fs = 10000;
L = 1000;
t = (0:L-1)'/Fs;
x = sin(2*pi*250*t) + 0.75*cos(2*pi*340*t); % Original signal
y = x + .5*randn(size(x)); % Noisy signal

Find the frequency components of the signal using serdes.AGC.

agcblock = serdes.AGC('TargetRMSVoltage',0.25);
z = agcblock(y);

Plot the input and modified waveforms.

figure, plot(t,y,t,z)
legend('AGC input','AGC output')
title('Example Application of the Automatic Gain Control SerDes block');

1 SerDes System Objects — Alphabetical List

1-6

xlabel('time [seconds]');
ylabel('Volts');

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 serdes.AGC

1-7

IBIS-AMI codegen is not supported in MAC.

See Also
AGC | VGA | serdes.VGA

Introduced in R2019a

1 SerDes System Objects — Alphabetical List

1-8

serdes.CDR
Performs clock data recovery function

Description
The serdes.CDR System object provides clock sampling times and estimates data
symbols at the receiver using a first order phase tracking CDR model. For more
information, see “Clock and Data Recovery in SerDes System”.

To provide clock data locations:

1 Create the serdes.CDR object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
cdr = serdes.CDR
cdr = serdes.CDR(Name,Value)

Description
cdr = serdes.CDR returns a CDR object that determines the clock sampling times and
estimates the data symbol according to the Bang-Bang CDR algorithm. It does not return
or modify the incoming waveform.

cdr = serdes.CDR(Name,Value) returns a CDR object with each specified property
set to specific value. Unspecified properties have default values.
Example: cdr = serdes.CDR('Count',8)

 serdes.CDR

1-9

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Main
Count — Early or late CDR count threshold to trigger phase update
16 (default) | real positive integer ≥4

Early or late CDR count threshold to trigger a phase update, specified as a unitless real
positive integer ≥4. Increasing the value of Count provides a more stable output clock
phase at the expense of convergence speed. Because the bit decisions are made at the
clock phase output, a more stable clock phase has a better bit error rate (BER).

Early/late count threshold also controls the bandwidth of the CDR which is
approximately calculated by using the equation:

Bandwidth
Symbol time Early/late threshold count Step

=

1

i i

Data Types: double

Step — Clock phase resolution
0.0078 (default) | real scalar

Clock phase resolution, specified as a real scalar in fraction of symbol time. Step is the
inverse of the number of phase adjustments in CDR.
Data Types: double

PhaseOffset — Clock phase offset
0 (default) | real scalar in the range [-0.5,0.5]

1 SerDes System Objects — Alphabetical List

1-10

Clock phase offset, specified as a real scalar in the range [-0.5,0.5] in fraction of symbol
time. PhaseOffset is used to manually shift clock probability distribution function (PDF)
for better bit error rate (BER).
Data Types: double

ReferenceOffset — Reference clock offset impairment
0 (default) | real scalar ≤300

Reference clock offset impairment, specified as a real scalar ≤300 in parts per million
(ppm). ReferenceOffset is the deviation between transmitter oscillator frequency and
receiver oscillator frequency.
Data Types: double

Sensitivity — Sampling latch meta-stability voltage
0 (default) | real scalar

Sampling latch meta-stability voltage, specified as a real scalar in volts. If the data sample
voltage lies within the region (+/-Sensitivity), there is a 50% probability of bit error..
Data Types: double

Advanced
SymbolTime — Time of single symbol duration
1e-10 (default) | real scalar

Time of a single symbol duration, specified as a real scalar in s.
Data Types: double

SampleInterval — Uniform time step of waveform
6.25e-12 (default) | real scalar

Uniform time step of the waveform, specified as a real scalar in s.
Data Types: double

Modulation — Modulation scheme
2 (default) | 4

Modulation scheme, specified as 2 or 4.

 serdes.CDR

1-11

Modulation Value Modulation Scheme
2 Non-return to zero (NRZ)
4 Four-level pulse amplitude modulation (PAM4)

Data Types: double

WaveType — Input wave type form
'Sample' (default) | 'Impulse'

Input wave type form:

• 'Sample' — A sample-by-sample input signal.
• 'Impulse' — An impulse response input signal.

Data Types: char

Usage

Syntax
y = cdr(x)

Description
y = cdr(x)

Input Arguments
x — Input baseband signal
scalar

Input baseband signal. The input to the CDR must be applied as one sample at a time and
not as a vector.

1 SerDes System Objects — Alphabetical List

1-12

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Clock Distribution Recovery with CDR

This example shows how to recover clock distribution using serdes.CDR system object™.

Use a symbol time of 100 ps and 16 samples per symbol. The channel has 5 dB loss.

SymbolTime = 100e-12;
SamplesPerSymbol = 16;
dt = SymbolTime/SamplesPerSymbol;
loss = 5;
chan = serdes.ChannelLoss('Loss',loss,'dt',dt,...
 'TargetFrequency',1/SymbolTime/2,'RiseTime',SamplesPerSymbol/4*dt);

Create a random data pattern using a pseudorandom binary sequence of order 10.

ord = 10; %PRBS order
nrz=prbs(ord,2^ord-1);
nrzPattern = nrz(:)' - 0.5; %[0,1] --> [-0.5,0.5];
ChannelPulseResponse = impulse2pulse(chan.impulse, SamplesPerSymbol, dt);
waveprbs = pulse2wave(ChannelPulseResponse(:,1),nrzPattern,SamplesPerSymbol);
wave2 = [waveprbs; waveprbs];

Create the CDR object that utilizes NRZ modulation scheme.

 serdes.CDR

1-13

CDR1 = serdes.CDR('Modulation',2,'Count',8,'Step',1/64,...
 'SymbolTime',SymbolTime,'SampleInterval',dt);

Initialize the outputs.

phase = zeros(1,length(wave2));
CDRearlyLateCount = zeros(1,length(wave2));

Feed the waveform one sample at a time through the CDR object.

for ii = 1:length(wave2)
 [phase(ii), ~, optional] = CDR1(wave2(ii));
 CDRearlyLateCount(ii) = optional.CDRearlyLateCount;
end

Plot the eye diagram with recovered clock distribution, clock phase vs. time, and early/
late count threshold vs. time.

t = (0:length(wave2)-1)/SamplesPerSymbol;
teye = (0:SamplesPerSymbol-1)/SamplesPerSymbol;
eyed = reshape(wave2,SamplesPerSymbol,[]);
 figure,
subplot(2,2,[1,3]), yyaxis left, plot(teye,eyed, '-b'),
title('Eye Diagram with Recovered Clock Distribution')
xlabel('Symbol Time'), ylabel('Voltage')
yyaxis right,
histogram(phase,SamplesPerSymbol/2)
set(gca,'YTick',[])
subplot(2,2,2), plot(t,phase)
xlabel('Number of Symbols'), ylabel('Symbol Time');
title('Clock Phase vs. Time')
subplot(224), plot(t,CDRearlyLateCount)
xlabel('Number of Symbols'), ylabel('Count')
title('Early/Late Count Threshold vs. Time')

1 SerDes System Objects — Alphabetical List

1-14

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

IBIS-AMI codegen is not supported in MAC.

 serdes.CDR

1-15

See Also
CDR | DFECDR | serdes.DFECDR

Topics
“Clock and Data Recovery in SerDes System”

Introduced in R2019a

1 SerDes System Objects — Alphabetical List

1-16

serdes.ChannelLoss
Create simple lossy transmission line model

Description
The serdes.ChannelLoss System object constructs a lossy transmission line model for
use in the SerDes Designer app and other exported Simulink® models in the SerDes
Toolbox. For more information, see “Analog Channel Loss in SerDes System”.

To construct the loss model from channel loss metric:

1 Create the serdes.ChannelLoss object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
ChannelLoss = serdes.ChannelLoss
ChannelLoss = serdes.ChannelLoss(Name,Value)

Description
ChannelLoss = serdes.ChannelLoss returns a ChannelLoss object that modifies
an input waveform with a lossy printed circuit board transmission line model according to
the method outlined in [1].

ChannelLoss = serdes.ChannelLoss(Name,Value) sets properties using one or
more name-value pairs. Enclose each property name in quotes. Unspecified properties
have default values.

 serdes.ChannelLoss

1-17

Example: ChannelLoss =
serdes.ChannelLoss('Loss',5,'TargetFrequency',14e9) returns a
ChannelLoss object that has a channel loss of 5 dB at 14 GHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Loss — Channel power loss at target frequency
8 (default) | real scalar

Channel loss at the target frequency, specified as a real scalar in dB.
Data Types: double

TargetFrequency — Frequency of desired channel loss
1e10 (default) | positive real scalar

Frequency for the desired channel loss, specified as a positive real scalar in Hz.
Data Types: double

dt — Sample interval
1e-12 (default) | positive real scalar

Sample interval in s, specified as a positive real scalar.
Data Types: double

Zc — Differential channel characteristic impedance
100 (default) | positive real scalar

Differential characteristic impedance of the channel, specified as a positive real scalar in
ohms.
Data Types: double

1 SerDes System Objects — Alphabetical List

1-18

TxR — Single-ended impedance of transmitter analog model
50 (default) | nonnegative real scalar

Single-ended impedance of the transmitter analog model, specified as a nonnegative real
scalar in ohms.
Data Types: double

TxC — Capacitance of transmitter analog model
1e-12 (default) | nonnegative real scalar

Capacitance of the transmitter analog model, specified as a nonnegative real scalar in
farads.
Data Types: double

RxR — Single-ended impedance of receiver analog model
50 (default) | nonnegative real scalar

Single-ended impedance of the receiver analog model, specified as a nonnegative real
scalar in ohms.
Data Types: double

RxC — Capacitance of receiver analog model
1e-12 (default) | nonnegative real scalar

Capacitance of the receiver analog model, specified as a nonnegative real scalar in farads.
Data Types: double

RiseTime — Rise time of stimulus input
1e-11 (default) | positive real scalar

20%−80% rise time of the stimulus input to transmitter analog model, specified as a
positive real scalar in seconds.
Data Types: double

VoltageSwingIdeal — Peak-to-peak voltage at input of transmitter analog
model
1 (default) | positive real scalar

Peak-to-peak voltage at the input of transmitter analog model, specified as a positive real
scalar in volts.

 serdes.ChannelLoss

1-19

Data Types: double

Usage

Syntax
y = ChannelLoss(x)

Description
y = ChannelLoss(x)

Input Arguments
x — Input baseband signal
scalar | vector

Input baseband signal.

Output Arguments
y — Estimated channel output
scalar | vector

Estimated channel output that includes the effect of a lossy printed circuit board
transmission line model according to the method outlined in “Analog Channel Loss in
SerDes System”.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

1 SerDes System Objects — Alphabetical List

1-20

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Processing Ideal Sinusoid Using ChannelLoss Model

This example shows how to process an ideal sinusoidal input waveform with the
ChannelLoss model and check that it modifies the amplitude of the waveform in a
reasonable way.

Define the system parameters. Use a symbol time of 100 ps with 8 samples per symbol.
The amplitude of the input signal is 1 V. The channel loss is 3 dB.

SymbolTime = 100e-12;
SamplesPerSymbol = 8;
a0 = 1;
Loss = 3;

Calculate the sample interval. Define a time vector that is 30 symbols long.

dt = SymbolTime/SamplesPerSymbol;
t = (0:SamplesPerSymbol*30)*dt;

Create the sinusoidal input waveform.

F = 1/SymbolTime/2; %Fundamental frequency
inputWave = a0*sin(2*pi*F*t);

Create the channelModel object at the specified loss for near ideal transmitter and
receiver termination.

channelModel = serdes.ChannelLoss('Loss',Loss,'dt',dt,...
 'TargetFrequency',F,'TxR',50,'TxC',1e-14,...
 'RxR',50,'RxC',1e-14);

Process the input waveform using the channelModel object.

 serdes.ChannelLoss

1-21

 outputWave = channelModel(inputWave);

Calculate the output amplitudes.

a1 = max(outputWave); %Output amplitude
aideal = a0*10^(-abs(channelModel.Loss)/20); %Theoretical output amplitude

Generate the frequency response.

s21 = channelModel.s21;
f = (0:length(s21)-1)*channelModel.dF;

Determine the loss at the target frequency of the frequency response.

f1 = find(f>channelModel.TargetFrequency,1,'first');
LossAtTarget = interp1(f(f1-1:f1),db(s21(f1-1:f1)),channelModel.TargetFrequency);

Plot the time and frequency response of the channel model.

tns = t*1e9;
thline = [tns(1),tns(end)];
fghz = f*1e-9;
figure
subplot(211)
plot(tns,outputWave,thline,aideal*[1 1],thline,a1*[1 1],'b--'),
grid on
xlabel('ns'),ylabel('Voltage')
title('Time Response of Channel Model')
legend('Output waveform',...
sprintf('Ideal amplitude: %g mV',round(aideal*1e3)),...
sprintf('Actual amplitude: %g mV',round(a1*1e3)),'Location','southwest')
subplot(212)
plot(fghz,db(s21),...
channelModel.TargetFrequency*1e-9,LossAtTarget,'o')
title('Frequency Response of Channel Model')
legend('S_{21}(f)',sprintf('%g dB @ %g GHz',LossAtTarget,channelModel.TargetFrequency*1e-9))
grid on
xlabel('GHz')
ylabel('dB')

1 SerDes System Objects — Alphabetical List

1-22

References
[1] IEEE 802.3bj-2014. "IEEE Standard for Ethernet Amendment 2: Physical Layer

Specifications and Management Parameters for 100 Gb/s Operation Over
Backplanes and Copper Cables." https://standards.ieee.org/standard/
802_3bj-2014.html.

 serdes.ChannelLoss

1-23

https://standards.ieee.org/standard/802_3bj-2014.html
https://standards.ieee.org/standard/802_3bj-2014.html

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

IBIS-AMI codegen is not supported in MAC.

See Also
Analog Channel | Configuration | SerDes Designer

Topics
“Analog Channel Loss in SerDes System”

Introduced in R2019a

1 SerDes System Objects — Alphabetical List

1-24

serdes.CTLE
Continuous time linear equalizer (CTLE) or peaking filter

Description
The serdes.CTLE System object processes a sample-by-sample input signal or
analytically processes an impulse response vector input signal to remove distortions
resulting from lossy channels.

To equalize the baseband signal using serdes.CTLE:

1 Create the serdes.CTLE object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
ctle = serdes.CTLE
ctle = serdes.CTLE(Name,Value)

Description
ctle = serdes.CTLE returns a CTLE object that modifies an input waveform according
to the pole zero transfer function defined in the object.

ctle = serdes.CTLE(Name,Value) returns a CTLE object with each specified
property set to a specific value. Unspecified properties have default values.
Example: ctle = serdes.CTLE('ACGain',5) returns a CTLE object with gain at the
peaking frequency set to 5 dB.

 serdes.CTLE

1-25

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Main
Mode — CTLE operating mode
2 (default) | 0 | 1

CTLE operating mode, specified as 0, 1, or 2. Mode determines whether the CTLE is
bypassed or not. If CTLE is not bypassed, then Mode also determines what transfer
function is applied to the input waveform.

Mode Value CTLE Mode CTLE Operation
0 off serdes.CTLE is bypassed and the input

waveform remains unchanged.
1 fixed serdes.CTLE applies the CTLE transfer

function as specified by ConfigSelect to the
input waveform.

2 adapt If WaveType is set to 'Impulse' or
'Waveform', then serdes.CTLE determines
the CTLE transfer function for the best eye
height opening and applies the transfer function
to the input waveform.
If WaveType is selected as 'Sample', then
serdes.CTLE operates in the fixed mode.

Data Types: double

ConfigSelect — Select which member of transfer function family to apply in
fixed mode
0 (default) | real integer scalar

1 SerDes System Objects — Alphabetical List

1-26

Select which member of the transfer function family to apply in fixed mode, specified as a
real integer scalar.
Example: ctle = serdes.CTLE('ConfigSelect',5,'Specification','DC Gain
and Peaking Gain') returns a CTLE object that selects the 6-th element of the
DCGain and PeakingGain vector to apply to the filter transfer function.
Data Types: double

Specification — Input specification for CTLE response
'DC Gain and Peaking Gain' (default) | 'DC Gain and AC Gain' | 'AC Gain
and Peaking Gain' | 'GPZ Matrix'

Defines which inputs will be used for the CTLE transfer function family:

• 'DC Gain and Peaking Gain' — CTLE response is specified from DCGain,
PeakingGain, and PeakingFrequency.

• 'DC Gain and AC Gain' — CTLE response is specified from DCGain, ACGain, and
PeakingFrequency.

• 'AC Gain and Peaking Gain' — CTLE response is specified from ACGain,
PeakingGain, and PeakingFrequency.

• 'GPZ Matrix' — CTLE response is specified from GPZ.

Data Types: char

PeakingFrequency — Approximate frequency at which CTLE transfer function
peaks
5e9 (default) | scalar | vector

Approximate frequency at which CTLE transfer function peaks in magnitude, specified as
a scalar or a vector in Hz. If specified as a scalar, it is converted to match the length of
ACGain, DCGain, and PeakingGain by scalar expansion. If specified as a vector, then
the vector length must be the same as the vectors in ACGain, DCGain, and
PeakingGain.
Data Types: double

DCGain — Gain at zero frequency
[0 -1 -2 -3 -4 -5 -6- -7 -8] (default) | scalar | vector

Gain at zero frequency for the CTLE transfer function, specified as a scalar or a vector in
dB. If specified as a scalar, it is converted to match the length of PeakingFrequency,

 serdes.CTLE

1-27

ACGain, and PeakingGain by scalar expansion. If specified as a vector, then the vector
length must be the same as the vectors in PeakingFrequency, ACGain, and
PeakingGain.
Data Types: double

PeakingGain — Difference between AC and DC gain
[0 1 2 3 4 5 6 7 8] (default) | scalar | vector

Peaking gain, specified as a vector in dB. It is the difference between ACGain and DCGain
for the CTLE transfer function. If specified as a scalar, it is converted to match the length
of PeakingFrequency, ACGain, and DCGain by scalar expansion. If specified as a
vector, then the vector length must be the same as the vectors in PeakingFrequency,
ACGain, and DCGain.
Data Types: double

ACGain — Gain at the peaking frequency
0 | scalar | vector

Gain at the peaking frequency for the CTLE transfer function, specified as a scalar or
vector in dB. If specified as a scalar, it is converted to match the length of
PeakingFrequency, DCGain, and PeakingGain by scalar expansion. If specified as a
vector, then the vector length must be the same as the vectors in PeakingFrequency,
DCGain, and PeakingGain.
Data Types: double

GPZ — Gain pole zero
matrix

Gain pole zero, specified as a matrix. GPZ explicitly defines the family of CTLE transfer
functions by specifying the DCGain (dB) in column 1 and then poles and zeros in
alternating columns. The poles and zeros are specified in Hz.

No repeated poles or zeros are allowed. Complex poles or zeros must have conjugates.
The number of poles must be greater than number of zeros for system stability.
Data Types: double

1 SerDes System Objects — Alphabetical List

1-28

Advanced
SymbolTime — Time of single symbol duration
100e-12 (default) | real scalar

Time of a single symbol duration, specified as a real scalar in s.
Data Types: double

SampleInterval — Uniform time step of waveform
6.25e-12 (default) | real scalar

Uniform time step of the waveform, specified as a real scalar in s.
Data Types: double

WaveType — Input wave type form
'Sample' (default) | 'Impulse' | 'Waveform'

Input wave type form:

• 'Sample' — A sample-by-sample input signal.
• 'Impulse' — An impulse response input signal.
• 'Waveform' — A bit-pattern waveform type of input signal, such as pseudorandom

binary sequence (PRBS).

Data Types: char

Usage

Syntax
y = ctle(x)

Description
y = ctle(x)

 serdes.CTLE

1-29

Input Arguments
x — Input baseband signal
scalar | vector

Input baseband signal. If the WaveType is set to 'Sample', then the input signal is a
sample-by-sample signal specified as scalars. If the WaveType is set to 'Impulse', then
the input signal is an impulse response vector signal.

Output Arguments
y — Equalized CTLE output
scalar | vector

Equalized CTLE output waveform. If the input signal is a sample-by-sample signal
specified as scalars, then the output is also scalar. If the input signal is an impulse
response vector signal, then the output is also a vector.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Impulse Response Processing Using CTLE

This example shows how to process the impulse response of a channel using
serdes.CTLE System object™.

1 SerDes System Objects — Alphabetical List

1-30

Use a symbol time of 100 ps and 16 samples per symbol. The channel has 16 dB loss. The
peaking frequency is 11 GHz.

 SymbolTime = 100e-12;
 SamplesPerSymbol = 16;
 dbloss = 16;
 DCGain = 0:-1:-26;
 PeakingGain = 0:26;
 PeakingFrequency = 11e9;

Calculate the sample interval.

dt = SymbolTime/SamplesPerSymbol;

Create the CTLE object. The object adaptively applies the optimum transfer function for
the best eye height opening to the input impulse response.

CTLE1 = serdes.CTLE('SymbolTime',SymbolTime,'SampleInterval',dt,...
 'Mode',2,'WaveType','Impulse',...
 'DCGain',DCGain,'PeakingGain',PeakingGain,...
 'PeakingFrequency',PeakingFrequency);

Create the channel impulse response.

channel = serdes.ChannelLoss('Loss',dbloss,'dt',dt,...
 'TargetFrequency',1/SymbolTime/2);
impulseIn = channel.impulse;

Process the impulse response with CTLE.

[impulseOut, Config] = CTLE1(impulseIn);

Display the adapted configuration.

fprintf('Adapted CTLE Configuration Selection is %g \n',Config)

Adapted CTLE Configuration Selection is 17

Convert the impulse responses to pulse, waveform, and eye diagram.

ord = 6;
dataPattern = prbs(ord,2^ord-1)-0.5;

pulseIn = impulse2pulse(impulseIn,SamplesPerSymbol,dt);
waveIn = pulse2wave(pulseIn,dataPattern,SamplesPerSymbol);

 serdes.CTLE

1-31

eyeIn = reshape(waveIn,SamplesPerSymbol,[]);

pulseOut = impulse2pulse(impulseOut,SamplesPerSymbol,dt);
waveOut = pulse2wave(pulseOut,dataPattern,SamplesPerSymbol);
eyeOut = reshape(waveOut,SamplesPerSymbol,[]);

Create the time vectors.

t = dt*(0:length(pulseOut)-1)/SymbolTime;
teye = t(1:SamplesPerSymbol);
t2 = dt*(0:length(waveOut)-1)/SymbolTime;

Plot pulse response comparison, waveform comparison, input, and output eye diagrams.

figure
plot(t,pulseIn,t,pulseOut)
legend('Input','Output')
title('Pulse Response Comparison')
xlabel('Symbol Times'),ylabel('Voltage')
grid on
axis([47 60 -0.1 0.4])

1 SerDes System Objects — Alphabetical List

1-32

figure
plot(t2,waveIn,t2,waveOut)
legend('Input','Output')
title('Waveform Comparison')
xlabel('Symbol Times'),ylabel('Voltage')
grid on

 serdes.CTLE

1-33

figure
subplot(211),plot(teye,eyeIn,'b')
ax = axis;
xlabel('Symbol Times'),ylabel('Voltage')
grid on
title('Input Eye Diagram')
subplot(212),plot(teye,eyeOut,'b')
axis(ax);
xlabel('Symbol Times'),ylabel('Voltage')
grid on
title('Output Eye Diagram')

1 SerDes System Objects — Alphabetical List

1-34

Sample-by-Sample Processing Using CTLE

This example shows how to process impulse response of a channel one sample at a time
using serdes.CTLE System object™.

Use a symbol time of 100 ps and 16 samples per symbol. The channel has 16 dB loss. The
peaking frequency is 11 GHz. Select 12-th order pseudorandom binary sequence (PRBS),
and simulate the first 500 symbols.

SymbolTime = 100e-12;
SamplesPerSymbol = 16;

 serdes.CTLE

1-35

dbloss = 16;
DCGain = 0:-1:-26;
PeakingGain = 0:26;
PeakingFrequency = 11e9;
ConfigSelect = 15;
prbsOrder = 12;
M = 500;

Calculate the sample interval.

dt = SymbolTime/SamplesPerSymbol;

Create the CTLE object. Since we are processing the channel one sample at a time, the
input waveform is 'sample' type. The object adaptively applies the optimum filter
transfer function for the best eye height opening.

CTLE = serdes.CTLE('SymbolTime',SymbolTime,'SampleInterval',dt,...
 'Mode',2,'WaveType','Sample',...
 'DCGain',DCGain,'PeakingGain',PeakingGain,...
 'PeakingFrequency',PeakingFrequency,...
 'ConfigSelect',ConfigSelect);

Create the channel impulse response.

channel = serdes.ChannelLoss('Loss',dbloss,'dt',dt,...
 'TargetFrequency',1/SymbolTime/2);

Create the eye diagram.

eyediagram = comm.EyeDiagram('SampleRate',1/dt,'SamplesPerSymbol',SamplesPerSymbol,...
 'YLimits',[-0.5 0.5]);

Initialize PRBS generator.

[dataBit,prbsSeed] = prbs(prbsOrder,1);

Loop through one symbol at at time.

 inwave = zeros(SamplesPerSymbol,1);
 outwave = zeros(SamplesPerSymbol,1);
 for ii = 1:M
 % Get new symbol
 [dataBit,prbsSeed] = prbs(prbsOrder,1,prbsSeed);
 inwave(1:SamplesPerSymbol) = dataBit-0.5;

1 SerDes System Objects — Alphabetical List

1-36

 % Convolve input waveform with channel
 y = channel(inwave);

 % Process one sample at a time through the CTLE
 for jj = 1:SamplesPerSymbol
 outwave(jj) = CTLE(y(jj));
 end

 % Plot eye diagram
 eyediagram(outwave)
 end

 serdes.CTLE

1-37

1 SerDes System Objects — Alphabetical List

1-38

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

IBIS-AMI codegen is not supported in MAC.

See Also
AGC | CTLE | DFECDR | SaturatingAmplifier | serdes.AGC | serdes.DFECDR

Introduced in R2019a

 serdes.CTLE

1-39

serdes.DFECDR

Decision feedback equalizer (DFE) with clock and data recovery (CDR)

Description
The serdes.DFECDR System object adaptively processes a sample-by-sample input signal
or analytically processes an impulse response vector input signal to remove distortions at
post-cursor taps.

The decision feedback equalizer modifies baseband signals to minimize the intersymbol
interference (ISI) at the clock sampling time. The DFE samples data at each clock tick
and adjusts the amplitude of the waveform by a correction voltage. The correction voltage
is determined by the previous N sampled unit interval (UI) values, where N is the number
of DFE taps.

A clock and data recovery function provides the clock sampling location to the DFE. The
clock recovery is a first order phase tracking CDR model. For more information, see
“Clock and Data Recovery in SerDes System”.

To equalize the input signal:

1 Create the serdes.DFECDR object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
dfecdr = serdes.DFECDR
dfecdr = serdes.DFECDR(Name,Value)

1 SerDes System Objects — Alphabetical List

1-40

Description
dfecdr = serdes.DFECDR returns a DFECDR object that modifies an input waveform
with the DFE and determines the clock sampling times. The system object estimates the
data symbol according to the Bang-Bang CDR algorithm.

dfecdr = serdes.DFECDR(Name,Value) returns a DFECDR object with each
specified property set to specified value. Unspecified properties have default values.
Example: dfecdr = serdes.DFECDR('Mode',1) returns a DFECDR object that
applies specified DFE tap weights to input waveform.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

DFE Properties
Mode — DFE operating mode
2 (default) | 0 | 1

DFE operating mode, specified as 0, 1, or 2. Mode determines what DFE tap weight
values are applied to the input waveform.

Mode Value DFE Mode DFE Operation
0 off serdes.DFECDR is bypassed and the input

waveform remains unchanged.
1 fixed serdes.DFECDR applies input DFE tap weights

specified in TapWeights to the input waveform.

 serdes.DFECDR

1-41

Mode Value DFE Mode DFE Operation
2 adapt serdes.DFECDR adaptively determines the

optimum DFE tap weights values and applies
them to the input waveform.

Data Types: double

TapWeights — Initial DFE tap weights
[0 0 0 0] (default) | row vector

Initial DFE tap weights, specified as a row vector in volts. The length of the vector
specifies the number of taps. Each vector element value specifies the strength of the tap
at that element position. Setting a vector element value to zero only initializes the tap.
Data Types: double

MinimumTap — Minimum value of adapted taps
-1 (default) | real scalar | real valued row vector

Minimum value of the adapted taps, specified as a real scalar or real valued row vector in
volts. Specify as a scalar to apply to all the DFE taps or as a vector that has the same
length as the TapWeights.
Data Types: double

MaximumTap — Maximum value of adapted taps
1 (default) | nonnegative real scalar | real valued row vector

Maximum value of the adapted taps, specified as a nonnegative real scalar or real valued
row vector in volts. Specify as a scalar to apply to all the DFE taps or as a vector that has
the same length as the TapWeights.
Data Types: double

EqualizationGain — Controls DFE tap weight update rate
9.6e-5 (default) | positive real scalar

Controls DFE tap weight update rate, specified as a unitless nonnegative real scalar.
Increasing the value of EqualizationGain leads to a faster convergence of DFE
adaptation at the expense of more noise in DFE tap values.
Data Types: double

1 SerDes System Objects — Alphabetical List

1-42

EqualizationStep — DFE adaptive step resolution
1e-6 (default) | nonnegative real scalar

DFE adaptive step resolution, specified as a nonnegative real scalar in volts.
EqualizationStep specifies the minimum DFE tap change from one time step to the
next to mimic hardware impairment. Setting EqualizationStep to zero yields DFE tap
values without any resolution limitation.
Data Types: double

CDR Properties
Count — Early or late CDR count threshold to trigger phase update
16 (default) | real positive integer greater than 4

Early or late CDR count threshold to trigger a phase update, specified as a unitless real
positive integer greater than 4. Increasing the value of Count provides a more stable
output clock phase at the expense of convergence speed. Because the bit decisions are
made at the clock phase output, a more stable clock phase has a better bit error rate
(BER).

Early/late count threshold also controls the bandwidth of the CDR which is
approximately calculated by using the equation:

Bandwidth
Symbol time Early/late threshold count Step

=

1

i i

Data Types: double

ClockStep — Clock phase resolution
0.0078 (default) | real scalar

Clock phase resolution, specified as a real scalar in fraction of symbol time. ClockStep is
the inverse of the number of phase adjustments in CDR.
Data Types: double

PhaseOffset — Clock phase offset
0 (default) | real scalar in the range [−0.5, 0.5]

 serdes.DFECDR

1-43

Clock phase offset, specified as a real scalar in the range [−0.5, 0.5] in fraction of symbol
time. PhaseOffset is used to manually shift the clock probability distribution function
(PDF) for better BER.
Data Types: double

ReferenceOffset — Reference clock offset impairment
0 (default) | real scalar in the range [−300, 300]

Reference clock offset impairment, specified as a real scalar in the range [−300, 300] in
parts per million (ppm). ReferenceOffset is the deviation between transmitter
oscillator frequency and receiver oscillator frequency.
Data Types: double

Sensitivity — Sampling latch metastability voltage
0 (default) | real scalar

Sampling latch metastability voltage, specified as a real scalar in volts (V). If the data
sample voltage lies within the region (±Sensitivity), there is a 50% probability of bit
error.
Data Types: double

Advanced Properties
SymbolTime — Time of single symbol duration
1e-10 (default) | real scalar

Time of a single symbol duration, specified as a real scalar in seconds (s).
Data Types: double

SampleInterval — Uniform time step of waveform
6.25e-12 (default) | real scalar

Uniform time step of the waveform, specified as a real scalar in seconds (s).
Data Types: double

Modulation — Modulation scheme
2 (default) | 4

Modulation scheme, specified as 2 or 4.

1 SerDes System Objects — Alphabetical List

1-44

Modulation Value Modulation Scheme
2 Non-return to zero (NRZ)
4 Four-level pulse amplitude modulation (PAM4)

Data Types: double

WaveType — Input wave type form
'Sample' (default) | 'Impulse'

Input wave type form:

• 'Sample' — A sample-by-sample input signal.
• 'Impulse' — An impulse response input signal.

Data Types: char

Usage

Syntax
y = dfecdr(x)

Description
y = dfecdr(x)

Input Arguments
x — Input baseband signal
scalar | vector

Input baseband signal. If the WaveType is set to 'Sample', then the input signal is a
sample-by-sample signal specified as a scalar. If the WaveType is set to 'Impulse', the
input signal is an impulse response vector signal.

 serdes.DFECDR

1-45

Output Arguments
y — Estimated channel output
scalar | vector

Estimated channel output. If the input signal is a sample-by-sample signal specified as a
scalar, then the output is also scalar. If the input signal is an impulse response vector
signal, the output is also a vector.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Impulse Response Processing Using DFECDR

This example shows how to process impulse response of a channel using serdes.DFECDR
system object™.

Use a symbol time of 100 ps. There are 16 samples per symbol. The channel has 14 dB
loss.

SymbolTime = 100e-12;
SamplesPerSymbol = 16;
dbloss = 14;
NumberOfDFETaps = 2;

Calculate the sample interval.

1 SerDes System Objects — Alphabetical List

1-46

dt = SymbolTime/SamplesPerSymbol;

Create the DFECDR object. The object adaptively applies optimum DFE tap weights to
input impulse response.

DFE1 = serdes.DFECDR('SymbolTime',SymbolTime,'SampleInterval',dt,...
 'Mode',2,'WaveType','Impulse','TapWeights',zeros(NumberOfDFETaps,1));

Create the channel impulse response.

channel = serdes.ChannelLoss('Loss',dbloss,'dt',dt,...
 'TargetFrequency',1/SymbolTime/2);
impulseIn = channel.impulse;

Process the impulse response with DFE.

[impulseOut,TapWeights] = DFE1(impulseIn);

Convert the impulse response to a pulse, a waveform and an eye diagram for
visualization.

ord = 6;
dataPattern = prbs(ord,2^ord-1)-0.5;

pulseIn = impulse2pulse(impulseIn,SamplesPerSymbol,dt);
waveIn = pulse2wave(pulseIn,dataPattern,SamplesPerSymbol);
eyeIn = reshape(waveIn,SamplesPerSymbol,[]);

pulseOut = impulse2pulse(impulseOut,SamplesPerSymbol,dt);
waveOut = pulse2wave(pulseOut,dataPattern,SamplesPerSymbol);
eyeOut = reshape(waveOut,SamplesPerSymbol,[]);

Create the time vectors.

t = dt*(0:length(pulseOut)-1)/SymbolTime;
teye = t(1:SamplesPerSymbol);
t2 = dt*(0:length(waveOut)-1)/SymbolTime;

Plot the resulting waveforms.

figure
plot(t,pulseIn,t,pulseOut)
legend('Input','Output')
title('Pulse Response Comparison')
xlabel('SymbolTimes'),ylabel('Voltage')

 serdes.DFECDR

1-47

grid on
axis([41 55 -0.1 0.4])

figure
plot(t2,waveIn,t2,waveOut)
legend('Input','Output')
title('Waveform Comparison')
xlabel('SymbolTimes'),ylabel('Voltage')
grid on

1 SerDes System Objects — Alphabetical List

1-48

figure
subplot(211),plot(teye,eyeIn,'b')
xlabel('SymbolTimes'),ylabel('Voltage')
grid on
title('Input Eye Diagram')
subplot(212),plot(teye,eyeOut,'b')
xlabel('SymbolTimes'),ylabel('Voltage')
grid on
title('Output Eye Diagram')

 serdes.DFECDR

1-49

Sample-by-Sample Processing Using DFECDR

This example shows how to process impulse response of a channel one sample at a time
using serdes.DFECDR system object™.

Use a symbol time of 100 ps, with 8 samples per symbol. The channel loss is 14 dB.
Select 12-th order pseudorandom binary sequence (PRBS), and simulate the first 4000
symbols.

SymbolTime = 100e-12;
SamplesPerSymbol = 8;

1 SerDes System Objects — Alphabetical List

1-50

dbloss = 14;
NumberOfDFETaps = 2;
prbsOrder = 12;
M = 4000;

Calculate sample interval.

dt = SymbolTime/SamplesPerSymbol;

Create the DFECDR system object. Since we are processing the channel one sample at a
time, the input waveform is 'sample' type. The object adaptively applies the optimum
DFE tap weights to input waveform.

DFE2 = serdes.DFECDR('SymbolTime',SymbolTime,'SampleInterval',dt,...
 'Mode',2,'WaveType','Sample','TapWeights',zeros(NumberOfDFETaps,1),...
 'EqualizationStep',0,'EqualizationGain',1e-4);

Create the channel impulse response.

channel = serdes.ChannelLoss('Loss',dbloss,'dt',dt,...
 'TargetFrequency',1/SymbolTime/2);

Create the eye diagram.

eyediagram = comm.EyeDiagram('SampleRate',1/dt,'SamplesPerSymbol',SamplesPerSymbol,...
 'YLimits',[-0.5 0.5]);

Initialize the PRBS generator.

[dataBit,prbsSeed]=prbs(prbsOrder,1);

Generate the sample-by-sample eye diagram.

%Loop through one symbol at a time.
inwave = zeros(SamplesPerSymbol,1);
outwave = zeros(SamplesPerSymbol,1);
dfeTapWeightHistory = nan(M,NumberOfDFETaps);

for ii = 1:M
 %Get new symbol
 [dataBit,prbsSeed]=prbs(prbsOrder,1,prbsSeed);
 inwave(1:SamplesPerSymbol) = dataBit-0.5;

 %Convolve input waveform with channel
 y = channel(inwave);

 serdes.DFECDR

1-51

 %Process one sample at a time through the DFE
 for jj = 1:SamplesPerSymbol
 [outwave(jj),TapWeights] = DFE2(y(jj));
 end

 %Save DFE taps
 dfeTapWeightHistory(ii,:) = TapWeights;

 %Plot eye diagram
 eyediagram(outwave)
end

1 SerDes System Objects — Alphabetical List

1-52

Plot the DFE adaptation history.

figure
plot(dfeTapWeightHistory)
grid on
legend('TapWeights(1)','TapWeights(2)')
xlabel('Symbols')

 serdes.DFECDR

1-53

ylabel('Voltage')
title('DFE Taps')

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 SerDes System Objects — Alphabetical List

1-54

IBIS-AMI codegen is not supported in MAC.

See Also
CDR | CTLE | DFECDR | serdes.CDR | serdes.CTLE

Topics
“Clock and Data Recovery in SerDes System”

Introduced in R2019a

 serdes.DFECDR

1-55

serdes.FFE
Models a feed-forward equalizer

Description
The serdes.FFE System object applies a feed-forward equalizer (FFE) as a symbol-
spaced finite-impulse response (FIR) filter. Apply the equalizer to a sample-by-sample
input signal or an impulse response vector input signal to reduce distortions due to
channel loss impairments.

To equalize the baseband signal:

1 Create the serdes.FFE object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
ffe = serdes.FFE
ffe = serdes.FFE(Name,Value)

Description
ffe = serdes.FFE returns an FFE object that modifies an input waveform according to
the finite impulse response (FIR) transfer function defined in the object.

ffe = serdes.FFE(Name,Value) sets properties using one or more name-value pairs.
Unspecified properties take default values.
Example: ffe = serdes.FFE('Mode',1)

1 SerDes System Objects — Alphabetical List

1-56

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Main
Mode — FFE operating mode
1 (default) | 0

FFE operating mode, specified as 0 or 1. Mode determines whether FFE is bypassed or
not.

Mode Value FFE Mode FFE Operation
0 Off serdes.FFE is bypassed

and the input waveform
remains unchanged.

1 Fixed serdes.FFE applies input
FFE tap weights, specified
in TapWeights, to input
waveform.

Data Types: double

TapWeights — FFE tap weights
[0 1 0 0 0] (default) | row vector

FFE tap weights, specified as a row vector in V. The length of the vector specifies the
number of taps. Each vector element's value specifies the strength of the tap at that
position. The tap with the largest magnitude is the main tap and therefore defines the
number of pre- and post-cursor taps.
Data Types: double

 serdes.FFE

1-57

Normalize — Normalize tap weights
true (default) | false

Normalize tap weight vectors, specified as true or false. When set to true, the object
scales the TapWeights vector elements so that the sum of their absolute values is 1.
Data Types: logical

Advanced
SymbolTime — Time of single symbol duration
1e-10 (default) | real scalar

Time of a single symbol duration, specified as a real scalar in s.
Data Types: double

SampleInterval — Uniform time step of waveform
6.25e-12 (default) | real scalar

Uniform time step of the waveform, specified as a real scalar in s.
Data Types: double

WaveType — Input wave type form
'Sample' (default) | 'Impulse'

Input waveform type:

• 'Sample' — A sample-by-sample input signal
• 'Impulse' — An impulse response input signal

Data Types: char

Usage

Syntax
y = ffe(x)

1 SerDes System Objects — Alphabetical List

1-58

Description
y = ffe(x)

Input Arguments
x — Input baseband signal
scalar | vector

Input baseband signal. If the WaveType is set to 'Sample', the input signal is a sample-
by-sample signal specified as a scalar. If the WaveType is set to 'Impulse', the input
signal must be an impulse response vector signal.

Output Arguments
y — Filtered channel output
scalar | vector

Filtered channel output. If the input signal is a sample-by-sample signal specified as a
scalar, the output is also scalar. If the input signal is an impulse response vector signal,
the output is also a vector.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

 serdes.FFE

1-59

Impulse Response Processing Using FFE

This example shows how to process impulse response of a channel using serdes.FFE
System object™.

Use a symbol time of 100 ps and 16 samples per symbol. The channel has 16 dB loss.

SymbolTime = 100e-12;
SamplesPerSymbol = 16;
dbloss = 16;

Calculate the sample interval.

dt = SymbolTime/SamplesPerSymbol;

Create the FFE object with fixed mode of operation.

TapWeights = [0 0.7 -0.2 -0.10];
FFEMode = 1;
FFE1 = serdes.FFE('SymbolTime',SymbolTime,'SampleInterval',dt,...
 'Mode',FFEMode,'WaveType','Impulse',...
 'TapWeights',TapWeights);

Create the channel impulse response.

channel = serdes.ChannelLoss('Loss',dbloss,'dt',dt,...
 'TargetFrequency',1/SymbolTime/2);
impulseIn = channel.impulse;

Process the impulse response with FFE.

impulseOut = FFE1(impulseIn);

Convert the impulse responses to pulse, waveform and eye diagram data for visualization
in later steps. Initialize the pseudorandom binary sequence (PRBS).

ord = 6;
dataPattern = prbs(ord,2^ord-1)-0.5;

pulseIn = impulse2pulse(impulseIn,SamplesPerSymbol,dt);
waveIn = pulse2wave(pulseIn,dataPattern,SamplesPerSymbol);
eyeIn = reshape(waveIn,SamplesPerSymbol,[]);

pulseOut = impulse2pulse(impulseOut,SamplesPerSymbol,dt);
waveOut = pulse2wave(pulseOut,dataPattern,SamplesPerSymbol);
eyeOut = reshape(waveOut,SamplesPerSymbol,[]);

1 SerDes System Objects — Alphabetical List

1-60

Create the time vectors.

t = dt*(0:length(pulseOut)-1)/SymbolTime;
teye = t(1:SamplesPerSymbol);
t2 = dt*(0:length(waveOut)-1)/SymbolTime;

Plot the pulse response comparison, waveform comparison, and input and output eye
diagrams.

figure
plot(t,pulseIn,t,pulseOut)
legend('Input','Output')
title('Pulse Response Comparison')
xlabel('SymbolTimes'),ylabel('Voltage')
grid on
axis([47 60 -0.1 0.4])

 serdes.FFE

1-61

figure
plot(t2,waveIn,t2,waveOut)
legend('Input','Output')
title('Waveform Comparison')
xlabel('SymbolTimes')
ylabel('Voltage')
grid on

1 SerDes System Objects — Alphabetical List

1-62

figure
subplot(211),plot(teye,eyeIn,'b')
ax = axis;
xlabel('SymbolTimes')
ylabel('Voltage')
grid on
title('Input Eye Diagram')
subplot(212),plot(teye,eyeOut,'b')
axis(ax);
xlabel('SymbolTimes')
ylabel('Voltage')
grid on
title('Output Eye Diagram')

 serdes.FFE

1-63

Sample-by-Sample Processing Using FFE

This example shows how to process impulse response of a channel one sample at a time
using serdes.FFE System object™.

Use a symbol time of 100 ps with 16 samples per symbol. The channel has 16 dB loss.

SymbolTime = 100e-12;
SamplesPerSymbol = 16;
dbloss = 16;

Calculate the sample interval.

1 SerDes System Objects — Alphabetical List

1-64

dt = SymbolTime/SamplesPerSymbol;

Create the FFE object with fixed mode.

FFEMode = 1;
TapWeights = [0 0.7 -0.2 -0.1];
FFE = serdes.FFE('SymbolTime',SymbolTime,'SampleInterval',dt,...
 'Mode',FFEMode,'WaveType','Sample',...
 'TapWeights',TapWeights);

Create the channel impulse response.

channel = serdes.ChannelLoss('Loss',dbloss,'dt',dt,...
 'TargetFrequency',1/SymbolTime/2);

Create the eye diagram.

eyediagram = comm.EyeDiagram('SampleRate',1/dt,'SamplesPerSymbol',SamplesPerSymbol,...
 'YLimits',[-0.5 0.5]);

Initialize the pseudorandom binary sequence (PRBS) code generator of order 12.

prbsOrder = 12;
M = 500; %number of symbols to simulate
[dataBit,prbsSeed]=prbs(prbsOrder,1);

Loop through one symbol at a time.

inwave = zeros(SamplesPerSymbol,1);
outwave = zeros(SamplesPerSymbol,1);
for ii = 1:M
 %Get new symbol
 [dataBit,prbsSeed]=prbs(prbsOrder,1,prbsSeed);
 inwave(1:SamplesPerSymbol) = dataBit-0.5;

 %convolve input waveform with channel
 y = channel(inwave);

 %process one sample at a time through the FFE
 for jj = 1:SamplesPerSymbol
 outwave(jj) = FFE(y(jj));
 end

 %Plot eye diagram
 eyediagram(outwave)
end

 serdes.FFE

1-65

1 SerDes System Objects — Alphabetical List

1-66

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

IBIS-AMI codegen is not supported in MAC.

See Also
CTLE | FFE | serdes.CTLE

Introduced in R2019a

 serdes.FFE

1-67

serdes.PassThrough
Propagates baseband signal without modification

Description
The serdes.PassThrough System object passes the input signal without any
modification. This System object is used as a place holder within a SerDes system and as
a template for user-authored system objects for use in SerDes Toolbox.

To propagate the signal through a serdes.PassThrough:

1 Create the serdes.PassThrough object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
PassThrough = serdes.PassThrough
PassThrough = serdes.PassThrough(Name,Value)

Description
PassThrough = serdes.PassThrough returns an empty pass through object that
returns the input signal unchanged.

PassThrough = serdes.PassThrough(Name,Value) returns an empty pass through
object with each specified property set to specific value. Unspecified properties have
default values.
Example: SatAmp = serdes.PassThrough('Modulation',4)

1 SerDes System Objects — Alphabetical List

1-68

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Modulation — Modulation scheme
2 (default) | 4

Modulation scheme, specified as 2 or 4.

Modulation Value Modulation Scheme
2 Non-return to zero (NRZ)
4 Four-level pulse amplitude modulation (PAM4)

Data Types: double

SymbolTime — Time of single symbol duration
1e-10 (default) | real scalar

Time of a single symbol duration, specified as a real scalar in s.
Data Types: double

SampleInterval — Uniform time step of waveform
6.25e-12 (default) | real scalar

Uniform time step of the waveform, specified as a real scalar in s.
Data Types: double

 serdes.PassThrough

1-69

Usage

Syntax
y = PassThrough(x)

Description
y = PassThrough(x)

Input Arguments
x — Input baseband signal
scalar | vector

Input baseband signal.

Output Arguments
y — Unchanged output voltage
scalar | vector

Unchanged output voltage, as specified by the serdes.PassThrough object.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics

1 SerDes System Objects — Alphabetical List

1-70

reset Reset internal states of System object

Examples

Propagate Input Waveform Using PassThrough

This example shows how to propagate an input waveform without modification using a
serdes.PassThrough system object™.

Create the incoming waveform.

t = linspace(0,12,101);
y1 = sin(t);

Create the PassThrough object.

PT = serdes.PassThrough;

Process the input waveform with the PassThrough object.

y2 = PT(y1);

Plot the input and output waveforms.

figure, plot(t,y1,'--',t,y2,'.')
legend('Input','Output')
title('Using PassThrough to Propagate Signal');
xlabel('Time (s)');
ylabel('Amplitude (V)');

 serdes.PassThrough

1-71

Verify the equality of input and output signals.

isequal(y1,y2)

ans = logical
 1

1 SerDes System Objects — Alphabetical List

1-72

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

IBIS-AMI codegen is not supported in MAC.

See Also
CTLE | DFECDR | FFE | serdes.CTLE | serdes.DFECDR | serdes.FFE

Introduced in R2019a

 serdes.PassThrough

1-73

serdes.SaturatingAmplifier
Models a saturating amplifier

Description
The serdes.SaturatingAmplifier System object scales the input waveform
according to a voltage in versus voltage out response. The voltage in versus voltage out
response is specified either by the soft clipping response defined by Limit and Linear
Gain properties or by the VinVout property. serdes.SaturatingAmplifier System
object applies memoryless nonlinearity to incoming waveform.

To limit the voltage output to a specific value:

1 Create the serdes.SaturatingAmplifier object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
SatAmp = serdes.SaturatingAmplifier
SatAmp = serdes.SaturatingAmplifier(Name,Value)

Description
SatAmp = serdes.SaturatingAmplifier returns an amplifier object that modifies
the input signal so that the output voltage is clipped to 1.2 V.

SatAmp = serdes.SaturatingAmplifier(Name,Value) returns an amplifier object
with each specified property set to specific value. Unspecified properties have default
values.

1 SerDes System Objects — Alphabetical List

1-74

Example: SatAmp = serdes.SaturatingAmplifier('Limit',5)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Mode — Amplifier operating mode
1 (default) | 0

Amplifier operating mode, specified as 0 or 1. Mode determines whether the amplifier is
bypassed or not.

Mode
Value

Saturating
Amplifier Mode

Saturating Amplifier Operation

0 Off serdes.SaturatingAmplifier is bypassed and the
input waveform remains unchanged.

1 On serdes.SaturatingAmplifier scales the input
waveform according to a voltage in versus voltage out
response.

Data Types: double

Specification — Input specification for limiting amplifier output
'Limit and Linear Gain' (default) | 'VinVout'

Input specification for limiting amplifier output:

• 'Limit and Linear Gain' — Creates a soft clipping voltage in versus voltage out
response with the values specified in the Limit and Linear Gain properties.

• 'VinVout' — Generates output voltages corresponding to input voltage specified in
the VinVout property. If any input voltage point falls outside the specified values, the
output for that particular input voltage is linearly interpolated.

 serdes.SaturatingAmplifier

1-75

Data Types: char

Limit — Clipping voltage for limiting amplifier
1.2 (default) | real positive scalar

Clipping voltage for the limiting amplifier, specified as a real positive scalar in V.
Data Types: double

LinearGain — Amplifier gain in linear region
1 (default) | real positive scalar

Amplifier gain in the linear region, specified as a unitless real positive scalar.
Data Types: double

VinVout — Input and corresponding output voltage response table
N×2 matrix

Input and corresponding output voltage response table, specified as an N-by-2 matrix in V.
Data Types: double

Usage

Syntax
y = SatAmp(x)

Description
y = SatAmp(x)

Input Arguments
x — Input baseband signal
scalar | vector

Input baseband signal.

1 SerDes System Objects — Alphabetical List

1-76

Output Arguments
y — Clipped output voltage
scalar | vector

Clipped output voltage, as specified by the serdes.SaturatingAmplifier object.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Cliping Input Waveform Using SaturatingAmplifier

This example shows how to clip an incoming sine wave using the
serdes.SaturatingAmplifier system object™.

Define an input sine wave with a frequency of 250 Hz.

Fs = 10000;
L = 100;
t = (0:L-1)'/Fs;
x = sin(2*pi*250*t);

Construct the SaturatingAmplifier system object with a linear gain of 2, and gain limit of
0.8 V.

linearGain = 2;
limit = 0.8;

 serdes.SaturatingAmplifier

1-77

SaturatingAmplifier = serdes.SaturatingAmplifier('Mode',1,...
 'Limit',limit,'LinearGain',linearGain);
y = SaturatingAmplifier(x);

Plot the input and modified waveforms.

figure, plot(t,x,t,y)
legend('Input','Output')
title('Clipping Waveform Using Saturating Amplifier');
xlabel('Time (s)');
ylabel('Amplitude (V)');

1 SerDes System Objects — Alphabetical List

1-78

Define SaturatingAmplifier with VinVout Table

This example shows how to define a serdes.SaturatingAmplifier system object™
using the VinVout property.

Define an input sine wave with a frequency of 250 Hz.

t = (0:99)/10000;
x = sin(2*pi*250*t);

Define the Voltage In/Voltage Out matrix.

M = [-0.6194 -0.8000
 -0.4129 -0.6954
 -0.2065 -0.3966
 0 0
 0.2065 0.3966
 0.4129 0.6954
 0.6194 0.8000];

Define the saturating amplifier with the VinVout table.

SatAmp = serdes.SaturatingAmplifier('Mode',1,'Specification','VinVout','VinVout',M);

Modify the input waveform with the saturating amplifier.

y = SatAmp(x);

Plot the input and modified output waveforms.

figure;
plot (t,x,t,y)
legend ('SaturatingAmplifier input','SaturatingAmplifier output');
grid on;
xlabel('Time (Seconds)');
ylabel('Amplitude (Volts)');

 serdes.SaturatingAmplifier

1-79

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

IBIS-AMI codegen is not supported in MAC.

1 SerDes System Objects — Alphabetical List

1-80

See Also
AGC | SaturatingAmplifier | VGA | serdes.AGC | serdes.VGA

Introduced in R2019a

 serdes.SaturatingAmplifier

1-81

serdes.VGA

Models a variable gain amplifier

Description
The serdes.VGA system object scales the amplitude of the input waveform based on a
gain specified by the user.

To scale the input signal:

1 Create the serdes.VGA object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
vga = serdes.VGA
vga = serdes.VGA(Name,Value)

Description
vga = serdes.VGA returns a VGA object that modifies a input waveform according to
the gain defined by the user.

vga = serdes.VGA(Name,Value) returns a VGA object with each specified property
set to specific value. Unspecified properties have default values.
Example: vga = serdes.VGA('ACGain',5)

1 SerDes System Objects — Alphabetical List

1-82

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Main
Mode — VGA operating mode
1 (default) | 0

VGA operating mode, specified as 0 or 1. Mode determines if the VGA adjusts the gain of
input signal or acts as a pass-through.

Mode
Value

VGA Mode VGA Operation

0 Off serdes.VGA is bypassed, the input waveform remains
unchanged.

1 On serdes.VGA scales the input waveform according to the
specified Gain.

Data Types: double

Gain — Multiplicative gain used to scale the input waveform
1 (default) | scalar

Multiplicative gain used to scale the input waveform, specified as a unitless scalar.
Data Types: double

 serdes.VGA

1-83

Usage

Syntax
y = vga(x)

Description
y = vga(x)

Input Arguments
x — Input signal
scalar | vector

Input signal to be scaled, specified as a scalar or vector.

Output Arguments
y — Scaled output signal
scalar | vector

Scaled output signal, returned as a scalar or vector corresponding to the input signal.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics

1 SerDes System Objects — Alphabetical List

1-84

reset Reset internal states of System object

Examples

Scaling Input Waveform using VGA

This example shows how to apply variable gain to input waveform using serdes.VGA
system object™.

Create the input waveform.

t = linspace(0,12,101);
y1 = sin(t);

Create the VGA object with a scale factor of 3.

vga = serdes.VGA('Gain',3);

Process the input waveform with the VGA object.

y2 = vga(y1);

Plot the input and output waveforms.

figure
plot(t,y1,t,y2)
xlabel('Time')
ylabel('Voltage')
legend('Input','output')
grid on
title(sprintf('Scaled Output Waveform Using VGA System Object = %g',vga.Gain))

 serdes.VGA

1-85

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

IBIS-AMI codegen is not supported in MAC.

1 SerDes System Objects — Alphabetical List

1-86

See Also
AGC | VGA | serdes.AGC

Introduced in R2019a

 serdes.VGA

1-87

Blocks — Alphabetical List

2

Analog Channel
Construct loss model from channel loss metric or impulse response
Library: SerDes Toolbox / Utilities

Description
The Analog Channel block constructs a loss model using a channel loss metric or an
impulse response from another source in a SerDes Toolbox model. Analog model inputs
are only used for IBIS file construction when using impulse response. For more
information, see “Analog Channel Loss in SerDes System”.

Ports

Input
WaveIn — Input signal
scalar | vector

Input signal, specified as a waveform.
Data Types: double

Output
WaveOut — Modified output data
scalar | vector

Modified output data that includes the effect of a lossy printed circuit board transmission
line model according to the method outlined in [1].
Data Types: double

2 Blocks — Alphabetical List

2-2

Parameters
Channel Model

Channel model — Source of channel model
Loss model (default) | Impulse response

Source of channel model.

• Select Loss model to model the analog channel from a loss model.
• Select Impulse response to model the analog channel from an impulse response.

Programmatic Use

• Use get_param(gcb,'ChannelType') to view the current Channel model.
• Use set_param(gcb,'ChannelType',value) to set a specific Channel model.

Target frequency (Hz) — Frequency for desired channel loss
20e9 (default) | positive real scalar

Frequency for the desired channel loss, specified as a positive real scalar in Hz. It
corresponds to the Nyquist frequency of the system.

Dependencies

This parameter is only available when Loss model is selected as Channel model.

Programmatic Use

• Use get_param(gcb,'TargetFrequency') to view the current value of Target
frequency (Hz).

• Use set_param(gcb,'TargetFrequency',value) to set Target frequency (Hz)
to a specific value.

Data Types: double

Loss (dB) — Channel loss at target frequency
8 (default) | scalar

Channel loss at the target frequency, specified as a scalar in dB.

 Analog Channel

2-3

Dependencies

This parameter is only available when Loss model is selected as Channel model.
Programmatic Use

• Use get_param(gcb,'Loss') to view the current value of Loss (dB).
• Use set_param(gcb,'Loss',value) to set Loss (dB) to a specific value.

Data Types: double

Impedance (Ohms) — Channel characteristic impedance
positive real scalar

Characteristic impedance of the channel, specified as a positive real scalar in ohms.
Impedance (Ohms) depends on the setting of Signaling in the Configuration tab in
the SerDes Designer app or in the Configuration block.

• If Signaling is set to Differential, the default value of Impedance (Ohms) is
100.

• If Signaling is set to Single-ended, the default value of Impedance (Ohms) is 50.

Dependencies

This parameter is only available when Loss model is selected as Channel model.
Programmatic Use

• Use get_param(gcb,'Zc') to view the current value of Impedance.
• Use set_param(gcb,'Zc',value) to set Impedance to a specific value.

Data Types: double

Impulse response — User provided impulse response
[zeros(1,63),1/SampleInterval,zeros(1,192)] (default) | vector

User provided impulse response, specified as a unitless vector. Impulse response is used
to construct a channel loss model from the user-defined impulse response of the system.

Dependencies

This parameter is only available when Impulse response is selected as Channel
model

2 Blocks — Alphabetical List

2-4

Programmatic Use

• Use get_param(gcb,'ImpulseResponse') to view the current value of Impulse
response.

• Use set_param(gcb,'ImpulseResponse',value) to set Impulse response to a
specific value.

Data Types: double

Analog Model

Tx R (Ohms) — Single-ended impedance of transmitter analog model
50 (default) | nonnegative real scalar

Single-ended impedance of the transmitter analog model, specified as a nonnegative real
scalar in ohms.

Programmatic Use

• Use get_param(gcb,'TxR') to view the current value of Tx R (Ohms).
• Use set_param(gcb,'TxR',value) to set Tx R (Ohms) to a specific value.

Data Types: double

Tx C (F) — Capacitance of transmitter analog model
1e-13 (default) | nonnegative real scalar

Capacitance of the transmitter analog model, specified as a nonnegative real scalar in
farads.

Programmatic Use

• Use get_param(gcb,'TxC') to view the current value of Tx C (F).
• Use set_param(gcb,'TxC',value) to set Tx C (F) to a specific value.

Data Types: double

Rx R (Ohms) — Single-ended impedance of receiver analog model
50 (default) | nonnegative real scalar

Single-ended impedance of the receiver analog model, specified as a nonnegative real
scalar in ohms.

 Analog Channel

2-5

Programmatic Use

• Use get_param(gcb,'RxR') to view the current value of Rx R (Ohms).
• Use set_param(gcb,'RxR',value) to set Rx R (Ohms) to a specific value.

Data Types: double

Rx C (F) — Capacitance of receiver analog model
1e-13 (default) | nonnegative real scalar

Capacitance of the receiver analog model, specified as a nonnegative real scalar in farads.

Programmatic Use

• Use get_param(gcb,'RxC') to view the current value of Rx C (F).
• Use set_param(gcb,'RxC',value) to set Rx C (F) to a specific value.

Data Types: double

Rise time (s) — Rise time of stimulus input
5e-12 (default) | positive real scalar

20%−80% rise time of the stimulus input to transmitter analog model, specified as a
positive real scalar in seconds.

Programmatic Use

• Use get_param(gcb,'RiseTime') to view the current value of Rise time (s).
• Use set_param(gcb,'RiseTime',value) to set Rise time (s) to a specific value.

Data Types: double

Voltage (V) — Peak-to-peak voltage at input of transmitter analog model
1 (default) | positive real scalar

Peak-to-peak voltage at the input of transmitter analog model, specified as a positive real
scalar in volts.

Programmatic Use

• Use get_param(gcb,'VoltageSwingIdeal') to view the current value of Voltage
(V).

2 Blocks — Alphabetical List

2-6

• Use set_param(gcb,'VoltageSwingIdeal',value) to set Voltage (V) to a
specific value.

Data Types: double

References
[1] IEEE 802.3bj-2014. "IEEE Standard for Ethernet Amendment 2: Physical Layer

Specifications and Management Parameters for 100 Gb/s Operation Over
Backplanes and Copper Cables." URL: https://standards.ieee.org/standard/
802_3bj-2014.html.

See Also
Configuration | Stimulus

Topics
“Analog Channel Loss in SerDes System”

Introduced in R2019a

 Analog Channel

2-7

https://standards.ieee.org/standard/802_3bj-2014.html
https://standards.ieee.org/standard/802_3bj-2014.html

AGC
Automatically adjusts gain to maintain output waveform amplitude
Library: SerDes Toolbox / Datapath Blocks

Description
The AGC block applies an adaptive variable gain to the input waveform to achieve a
desired RMS output voltage. Averaging the RMS voltage over a specified number of
symbols, AGC performs automatic gain control (AGC) by increasing or decreasing the
gain, or keeping the gain constant.

Ports

Input
WaveIn — Input baseband signal
scalar | vector

Input baseband signal. The input signal can be a sample-by-sample signal specified as a
scalar, or an impulse response vector signal.
Data Types: double

Output
WaveOut — Gain adjusted output signal
scalar | vector

Gain adjusted output signal. If the input signal is a sample-by-sample signal specified as a
scalar, the output is also scalar. If the input signal is an impulse response vector signal,
the output is also a vector.
Data Types: double

2 Blocks — Alphabetical List

2-8

Parameters
Mode — AGC operating mode
On (default) | Off

AGC operating mode:

• Off — AGC is bypassed, the input waveform remains unchanged.
• On — AGC adjusts gain of input waveform to maintain Target RMS voltage in output

waveform.

Programmatic Use

• Use get_param(gcb,'Mode') to view the current AGC Mode.
• Use set_param(gcb,'Mode',value) to set AGC to a specific Mode.

Target RMS voltage (V) — Desired RMS voltage of output waveform
0.3 (default) | real scalar in the range [0.003, 10]

Desired RMS voltage of the output waveform, specified as a real scalar in the range
[0.003, 10] in volts.

Programmatic Use

• Use get_param(gcb,'TargetRMSVoltage') to view the current value of Target
RMS voltage (V).

• Use set_param(gcb,'TargetRMSVoltage',value) to set Target RMS voltage
(V) to a specific value.

Data Types: double

Maximum gain — Maximum allowed AGC gain
10 (default) | positive real scalar

Maximum allowed AGC gain, specified as a positive real scalar. Maximum gain provides
a stable startup of the adaptive algorithm.

Programmatic Use

• Use get_param(gcb,'MaxGain') to view the current value of Maximum gain.
• Use set_param(gcb,'MaxGain',value) to set Maximum gain to a specific value.

 AGC

2-9

Data Types: double

Averaging length — Averaging length for RMS calculation
100 (default) | positive real scalar

Averaging length, specified as a positive real integer. Averaging length defines the
number of symbol over which the RMS calculation of the input signal is made.

Programmatic Use

• Use get_param(gcb,'AveragingLength') to view the current value of Averaging
length.

• Use set_param(gcb,'AveragingLength',value) to set Averaging length to a
specific value.

Data Types: double

IBIS-AMI parameters — Choose parameters to be included in IBIS-AMI model
Mode | Target RMS voltage

Choose which parameters to be included in IBIS-AMI models. By default, both parameters
are selected.

If you deselect a parameter, the parameter is removed from the AMI files, effectively
hard-coding the parameter to its current value. For example, if Target RMS voltage (V)
is set to 0.5 and you clear the check box for Target RMS voltage under IBIS-AMI
parameters, the value of Target RMS voltage (V) is hard-coded to 0.5 V.

See Also
VGA | serdes.AGC | serdes.VGA

Introduced in R2019a

2 Blocks — Alphabetical List

2-10

CDR
Models a clock data recovery circuit
Library: SerDes Toolbox / Datapath Blocks

Description
The CDR block provides clock sampling times and estimates data symbols at the receiver
using a first order phase tracking CDR model. For more information, see “Clock and Data
Recovery in SerDes System”..

Ports

Input
WaveIn — Input baseband signal
scalar

Input baseband signal. The input to the CDR must be applied as one sample at a time and
not as a vector.
Data Types: double

Parameters
Phase offset (symbol time) — Clock phase offset
0 (default) | real scalar in the range [0, 0.5]

Clock phase offset, specified as a real scalar in the range [0, 0.5] in fraction of symbol
time. Phase offset manually shifts clock probability distribution function (PDF) for better
bit error rate (BER).

 CDR

2-11

Programmatic Use

• Use get_param(gcb,'PhaseOffset') to view the current value of Phase offset
(symbol time).

• Use set_param(gcb,'PhaseOffset',value) to set CDR to a specific Phase offset
(symbol time).

Data Types: double

Reference offset (ppm) — Reference clock offset impairment
0 (default) | real scalar in the range [0, 300]

Reference clock offset impairment, specified as a real scalar in the range [0, 300] in parts
per million (ppm). Reference offset (ppm) is the deviation between transmitter
oscillator frequency and receiver oscillator frequency.

Programmatic Use

• Use get_param(gcb,'ReferenceOffset') to view the current value of Reference
offset (ppm).

• Use set_param(gcb,'ReferenceOffset',value) to set CDR to a specific
Reference offset (ppm).

Data Types: double

Early/late count threshold — Early or late CDR count threshold to trigger
phase update
16 (default) | real positive integer ≥5

Early or late CDR count threshold to trigger a phase update, specified as a unitless real
positive integer ≥5. Increasing the value of Early/late count threshold provides a more
stable output clock phase at the expense of convergence speed. Because the bit decisions
are made at the clock phase output, a more stable clock phase has a better bit error rate
(BER).

Early/late count threshold also controls the bandwidth of the CDR which is
approximately calculated by using the equation:

Bandwidth
Symbol time Early/late threshold count Step

=

1

i i

2 Blocks — Alphabetical List

2-12

Programmatic Use

• Use get_param(gcb,'Count') to view the current value of Early/late count
threshold.

• Use set_param(gcb,'Count',value) to set CDR to a specific Early/late count
threshold.

Data Types: double

Step (symbol time) — Clock phase resolution
0.0078 (default) | real scalar

Clock phase resolution, specified as a real scalar in fraction of symbol time. Step
(symbol time) is the inverse of the number of phase adjustments in CDR.
Programmatic Use

• Use get_param(gcb,'Step') to view the current value of Sensitivity.
• Use set_param(gcb,'Step',value) to set CDR to a specific Sensitivity.

Data Types: double

Sensitivity (V) — Sampling latch metastability voltage
0 (default) | real scalar

Sampling latch metastability voltage, specified as a real scalar in volts. If the data sample
voltage lies within the region (±Sensitivity (V)), there is a 50% probability of bit error.
Programmatic Use

• Use get_param(gcb,'Sensitivity') to view the current value of Sensitivity (V).
• Use set_param(gcb,'Sensitivity',value) to set CDR to a specific Sensitivity

(V).

Data Types: double

IBIS-AMI parameters — Choose parameters to be included in IBIS-AMI model
Phase offset | Reference Offset

Choose which parameters to include in IBIS-AMI models. By default, both parameters are
selected.

If you deselect a parameter, the parameter is removed from the AMI files, hard-coding the
parameter to its current value. For example, if Phase offset (symbol time) is set to 0

 CDR

2-13

and you clear the check box for Phase offset under IBIS-AMI parameters, Phase
offset (symbol time) is hard-coded to 0.

See Also
DFECDR | serdes.CDR | serdes.DFECDR

Topics
“Clock and Data Recovery in SerDes System”

Introduced in R2019a

2 Blocks — Alphabetical List

2-14

Configuration
Configure system wide settings in SerDes system model
Library: SerDes Toolbox / Utilities

Description
The Configuration block sets the system-wide settings of a SerDes system, such as symbol
time, samples per symbol, target bit error rate (BER), modulation scheme, and signaling
type. It also configures the generation of IBIS and AMI models and customizes the AMI
parameters.

Parameters
Symbol time (s) — Time of single symbol duration
100e-12 (default) | real positive scalar

Time of a single symbol duration, specified as a real positive scalar in s.

Programmatic Use

• Use get_param(gcb,'SymbolTime') to view the current value of Symbol time (s).
• Use set_param(gcb,'SymbolTime',value) to set Symbol time (s) to a specific

value.

Data Types: double

Samples per symbol — Data points per symbol
16 (default) | 8 | 32 | 64 | 128

Number of data points per symbol.

Programmatic Use

• Use get_param(gcb,'SamplesPerSymbol') to view the current value of Samples
per symbol.

 Configuration

2-15

• Use set_param(gcb,'SamplesPerSymbol',value) to set Samples per symbol
to a specific value.

Data Types: double

Sample interval (s) — Uniform time step of waveform
6.25e-12 (default) | real positive scalar

Uniform time step of the waveform, specified as a real positive scalar in s. This parameter
is read-only and is derived from Symbol time (s) and Samples per symbol.
Programmatic Use

• Use get_param(gcb,'SampleIntervalText') to view the current value of
Sample interval (s).

Data Types: double

Target BER — Target bit error rate
1e-6 (default) | real positive scalar

Target bit error rate used to generate eye-contours, specified as a unitless real positive
scalar.

Programmatic Use

• Use get_param(gcb,'TargetBER') to view the current value of Target BER.
• Use set_param(gcb,'TargetBER',value) to set Target BER to a specific value.

Data Types: double

Modulation — Modulation scheme
'NRZ' (default) | 'PAM4'

Number of logic levels in the modulation scheme:

• Select 'NRZ' if the modulation scheme has two logic levels.
• Select 'PAM4' if the modulation scheme has four logic levels.

Programmatic Use

• Use get_param(gcb,'Modulation') to view the current value of Modulation.
• Use set_param(gcb,'Modulation',value) to set Modulation to a specific value.

2 Blocks — Alphabetical List

2-16

Data Types: char

Signaling — How signal is transmitted through wires
'Differential' (default) | 'Single-ended'

How the incoming signal is transmitted through wires:

• 'Differential' — Transmit the incoming signal using a differential pair of signals.
The receiver responds to the difference between the two signals.

• 'Single-ended' — Transmit the incoming signal using a varying voltage. The
receiver responds to the difference between the incoming signal and a reference or
ground.

Signaling only affects the generated IBIS files. Voltage levels in Simulink do not change
when changing the signaling type. Signaling also affects the Impedance of Analog
Channel when the Channel model is Loss model.

Programmatic Use

• Use get_param(gcb,'Signaling') to view the current value of Signaling.
• Use set_param(gcb,'Signaling',value) to set Signaling to a specific value.

Data Types: char

Plot statistical analysis after simulation — Plot statistical analysis
after simulation
on (default) | off

Select to plot the statistical analysis (Init) results after the simulation is run. By default,
this option is selected.

Open SerDes IBIS-AMI Manager — Open SerDes IBIS-AMI Manager
button

Click to open the SerDes IBIS-AMI Manager dialog box. Using this dialog box, you can set
the IBIS and AMI file contents and export the IBIS-AMI model.

Set the IBIS and AMI model settings (model name, model type, corner percentage, bits to
ignore) for the transmitter and receiver and specify file creation options in the Export tab
of the SerDes IBIS-AMI Manager dialog box.

The IBIS tab of the SerDes IBIS-AMI Manager dialog box contains the IBS file contents.

 Configuration

2-17

You can add customized AMI parameters, additional tap structure, and jitter and noise
profiles using the AMI-Tx and AMI-Rx tabs. For more information, see “Manage IBIS-
AMI Parameters”.

See Also
Analog Channel | Stimulus

Topics
“Customizing SerDes Toolbox Datapath Control Signals”
“Manage IBIS-AMI Parameters”

Introduced in R2019a

2 Blocks — Alphabetical List

2-18

CTLE
Models continuous time linear equalizer (CTLE)
Library: SerDes Toolbox / Datapath Blocks

Description
The CTLE block applies a linear peaking filter to equalize the frequency response of a
sample-by-sample input signal. The equalization process reduces distortions resulting
from lossy channels.

Ports

Input
WaveIn — Input baseband signal
scalar | vector

Input baseband signal. The input signal can be a sample-by-sample signal specified as a
scalar, or an impulse response vector signal.
Data Types: double

Output
WaveOut — Equalized CTLE output
scalar | vector

Equalized CTLE output waveform. If the input signal is a sample-by-sample signal
specified as a scalar, then the output is also scalar. If the input signal is an impulse
response vector signal, then the output is also a vector.
Data Types: double

 CTLE

2-19

Parameters
Mode — CTLE operating mode
Adapt (default) | Off | Fixed

CTLE operating mode:

• Off — CTLE is bypassed and the input waveform remains unchanged.
• Fixed — CTLE applies the CTLE transfer function as specified by Configuration

select to the input waveform.
• Adapt — If the input signal is an impulse response vector or a waveform vector, then

the Init subsystem inside the CTLE determines the CTLE transfer function for the best
eye height opening and applies the transfer function to the input waveform. This
optimized transfer function is used by the CTLE for entire time domain simulation.

If the input signal is a sample-by-sample scalar, then the CTLE operates in the Fixed
mode.

Programmatic Use

• Use get_param(gcb,'Mode') to view the current CTLE Mode.
• Use set_param(gcb,'Mode',value) to set CTLE to a specific Mode.

Configuration select — Select which member of transfer function to apply in
fixed mode
0 (default) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

Select which transfer function configuration to apply in CTLE fixed mode, specified as a
real integer scalar. Depending on the Specification, Configuration select specifies
which gain coefficient is applied to the filter transfer function.

For example, setting Configuration select to n and Specification to 'DC Gain and
Peaking Gain' selects the (n+1)-th element in the DC gain (dB) and Peaking gain
(dB) vectors to be applied to the filter transfer function.

If CTLE Mode is set to Adapt and the input is an impulse response vector or a waveform
vector, Configuration select is automatically calculated to determine the best eye height
opening. To view the value of the Configuration select parameter, choose Add Plots >
Report in the SerDes Designer app.

2 Blocks — Alphabetical List

2-20

Programmatic Use

• Use get_param(gcb,'ConfigSelect') to view the current value of Configuration
Select.

• Use set_param(gcb,'ConfigSelect',value) to set Configuration Select to a
specific value.

Data Types: double

Specification — Input specification for CTLE response
'DC Gain and Peaking Gain' (default) | 'DC Gain and AC Gain' | 'AC Gain
and Peaking Gain' | 'GPZ Matrix'

Defines which inputs will be used for the CTLE transfer function family:

• 'DC Gain and Peaking Gain' — CTLE response is specified from DC gain (dB),
Peaking gain (dB), and Peaking frequency (Hz).

• 'DC Gain and AC Gain' — CTLE response is specified from DC gain (dB), AC
gain (dB), and Peaking frequency (Hz).

• 'AC Gain and Peaking Gain' — CTLE response is specified from AC gain (dB),
Peaking gain (dB), and Peaking frequency (Hz).

• 'GPZ Matrix' — CTLE response is specified from Gain pole zero matrix.

Programmatic Use

• Use get_param(gcb,'Specification') to view the current CTLE Specification.
• Use set_param(gcb,'Specification',value) to set CTLE to a specific
Specification.

Data Types: char

DC gain (dB) — Gain at zero frequency
[0:-1:-8] (default) | scalar | vector

Gain at zero frequency for the CTLE transfer function, specified as a scalar or a vector in
dB. If specified as a scalar, it is converted to match the length of Peaking gain (dB), AC
gain (dB), and Peaking frequency (Hz) by scalar expansion. If specified as a vector, the
vector length must be the same as the vectors in Peaking gain (dB), AC gain (dB), and
Peaking frequency (Hz).

 CTLE

2-21

Dependencies

This parameter is only available when Specification is set to 'DC Gain and Peaking
Gain' or 'DC Gain and AC Gain'.

Programmatic Use

• Use get_param(gcb,'DCGain') to view the current value of DC gain (dB).
• Use set_param(gcb,'DCGain',value) to set DC gain (dB) to a specific value.

Data Types: double

Peaking gain (dB) — Difference between AC and DC gain
[0:8] (default) | scalar | vector

Peaking gain, specified as a scalar or vector in dB. Peaking gain (dB) is the difference
between AC gain (dB) and DC gain (dB) for the CTLE transfer function. If specified as a
scalar, it is converted to match the length of DC gain (dB), AC gain (dB), and Peaking
frequency (Hz) by scalar expansion. If specified as a vector, the vector length must be
the same as the vectors in DC gain (dB), AC gain (dB), and Peaking frequency (Hz).
Dependencies

This parameter is only available when Specification is set to 'DC Gain and Peaking
Gain' or 'AC Gain and Peaking Gain'.

Programmatic Use

• Use get_param(gcb,'PeakingGain') to view the current value of Peaking gain
(dB).

• Use set_param(gcb,'PeakingGain',value) to set Peaking gain (dB) to a
specific value.

Data Types: double

AC gain (dB) — Gain at peaking frequency
0 (default) | scalar | vector

Gain at the peaking frequency for the CTLE transfer function, specified as a scalar or
vector in dB. If specified as a scalar, it is converted to match the length of DC gain (dB),
Peaking gain (dB), and Peaking frequency (Hz) by scalar expansion. If specified as a
vector, the vector length be the same as the vectors in DC gain (dB), Peaking gain
(dB), and Peaking frequency (Hz).

2 Blocks — Alphabetical List

2-22

Dependencies

This parameter is only available when Specification is set to 'DC Gain and AC Gain'
or 'AC Gain and Peaking Gain'.
Programmatic Use

• Use get_param(gcb,'ACGain') to view the current value of AC gain (dB).
• Use set_param(gcb,'ACGain',value) to set AC gain (dB) to a specific value.

Data Types: double

Peaking frequency (Hz) — Approximate frequency at which CTLE transfer
function peaks
5e9 (default) | scalar | vector

Approximate frequency at which CTLE transfer function peaks in magnitude, specified as
a scalar or a vector in GHz. If specified as a scalar, it is converted to match the length of
DC gain (dB), AC gain (dB), and Peaking gain (dB) by scalar expansion. If specified
as a vector, the vector length must be the same as the vectors in DC gain (dB), AC gain
(dB), and Peaking gain (dB).
Dependencies

This parameter is not available when Specification is set to 'GPZ Matrix' .
Programmatic Use

• Use get_param(gcb,'PeakingFrequency') to view the current value of Peaking
frequency (Hz).

• Use set_param(gcb,'PeakingFrequency',value) to set Peaking frequency
(Hz) to a specific value.

Data Types: double

Gain pole zero matrix — Gain pole zero
matrix

Gain pole zero, specified as a matrix. Gain pole zero matrix explicitly defines the family
of CTLE transfer functions by specifying the DC gain (dB) (dB) in column 1 and then
poles and zeros in alternating columns. The poles and zeros are specified in Hz.

No repeated poles or zeros are allowed. Complex poles or zeros must have conjugates.
The number of poles must be greater than number of zeros for system stability.

 CTLE

2-23

Example: To create a gain pole zero matrix with three poles and two zeroes, input the
matrix as follows: [G, P1, Z1, P2, Z2, P3].

Dependencies

This parameter is only available when Specification is set to 'GPZ Matrix'.

Programmatic Use

• Use get_param(gcb,'GPZ') to view the current value of Gain pole zero matrix.
• Use set_param(gcb,'GPZ',value) to set Gain pole zero matrix to a specific

value.

Data Types: double

IBIS-AMI parameters — Parameters included in IBIS-AMI model
Mode | Config select

Choose which parameters to include in IBIS-AMI models. By default, both parameters are
selected.

If you deselect a parameter, the parameter is removed from the AMI files, hard-coding the
parameter to its current value. For example, if Mode is set to Adapt and you clear the
check box for Mode under IBIS-AMI parameters, Mode is hard-coded to Adapt.

See Also
AGC | DFECDR | SaturatingAmplifier | serdes.AGC | serdes.CTLE | serdes.DFECDR

Introduced in R2019a

2 Blocks — Alphabetical List

2-24

DFECDR
Decision feedback equalizer (DFE) with clock and data recovery (CDR)
Library: SerDes Toolbox / Datapath Blocks

Description
The DFECDR block adaptively processes a sample-by-sample input signal or analytically
processes an impulse response vector input signal to remove distortions at post cursor
taps.

The decision feedback equalizer modifies baseband signals to minimize the intersymbol
interference (ISI) at the clock sampling time. The DFE samples data at each clock tick
and adjusts the amplitude of the waveform by a correction voltage. The correction voltage
is determined by the previous N sampled unit interval (UI) values, where N is the number
of DFE taps.

A clock and data recovery function provides the clock sampling location to the DFE. The
clock recovery is a first order phase tracking CDR model. For more information, see
“Clock and Data Recovery in SerDes System”.

Ports

Input
WaveIn — Input baseband signal
scalar | vector

Input baseband signal. The input signal can be a sample-by-sample signal specified as a
scalar, or an impulse response vector signal.
Data Types: double

 DFECDR

2-25

Output
WaveOut — Estimated channel output
scalar | vector

Estimated channel output. If the input signal is a sample-by-sample signal specified as a
scalar, the output is also scalar. If the input signal is an impulse response vector signal,
the output is also a vector.
Data Types: double

Parameters
IBIS-AMI parameters — Choose parameters to be included in IBIS-AMI model
Mode | Tap weights | Phase offset | Reference offset

Choose which parameters to include in IBIS-AMI models. By default, all four parameters
are selected.

If you deselect a parameter, the parameter is removed from the AMI files, effectively
hard-coding the parameter to its current value. For example, if Phase offset (symbol
time) is set to 0 and you clear the check box for Phase offset under IBIS-AMI
parameters, the value of Phase offset (symbol time) is hard-coded to 0.

DFE
Mode — DFE operating mode
Adapt (default) | Off | Fixed

DFE operating mode:

• Off — DFECDR is bypassed and the input waveform remains unchanged.
• Fixed — DFECDR applies the input DFE tap weights specified in Initial tap weights

(V) to the input waveform.
• Adapt — DFECDR adaptively determines the optimum DFE tap weights values for

best eye opening and applies them to the input waveform.

2 Blocks — Alphabetical List

2-26

Programmatic Use

• Use get_param(gcb,'Mode') to view the current DFECDR Mode.
• Use set_param(gcb,'Mode',value) to set DFECDR to a specific Mode.

Initial tap weights (V) — Initial DFE tap weights
[0 0 0 0] (default) | row vector

Initial DFE tap weights, specified as a row vector in volts. The length of the vector
specifies the number of DFE taps. The vector element value specifies the strength of the
tap at that element position. Setting a vector element value to zero only initializes the tap.

Programmatic Use

• Use get_param(gcb,'TapWeights') to view the current value of DFECDR Initial
tap weights (V).

• Use set_param(gcb,'TapWeights',value) to set DFECDR to a specific Initial
tap weights (V) vector value.

Data Types: double

Adaptive gain — Controls DFE tap weight update rate
9.6e-5 (default) | positive real scalar

Controls DFE tap weight update rate, specified as a unitless positive real scalar.
Increasing the value of Adaptive gain leads to a faster convergence of DFE adaptation at
the expense of more noise in DFE tap values.

Programmatic Use

• Use get_param(gcb,'EqualizationGain') to view the current DFECDR
Adaptive gain value.

• Use set_param(gcb,'EqualizationGain',value) to set DFECDR to a specific
value of Adaptive gain.

Data Types: double

Adaptive step size (V) — DFE adaptive step resolution
1e-06 (default) | nonnegative real scalar

DFE adaptive step resolution, specified as a nonnegative real scalar in volts. Adaptive
step size (V) specifies the minimum DFE tap change from one time step to the next to

 DFECDR

2-27

mimic hardware impairment. Setting Adaptive step size (V) to 0 yields DFE tap values
without any resolution limitation.

Programmatic Use

• Use get_param(gcb,'EqualizationStep') to view the current DFECDR
Adaptive step size (V) value.

• Use set_param(gcb,'EqualizationStep',value) to set DFECDR to a specific
value of Adaptive step size (V).

Data Types: double

Minimum DFE tap value (V) — Minimum value of adapted taps
-1 (default) | real scalar | real-valued row vector

Minimum value of the adapted taps, specified as a real scalar or real-valued row vector in
volts. Specify as a scalar to apply to all the DFE taps or as a vector that has the same
length as the Initial tap weights (V).
Programmatic Use

• Use get_param(gcb,'MinimumTap') to view the current DFECDR Minimum DFE
tap value (V) value.

• Use set_param(gcb,'MinimumTap',value) to set DFECDR to a specific value of
Minimum DFE tap value (V).

Data Types: double

Maximum DFE tap value (V) — Maximum value of adapted taps
1 (default) | nonnegative real scalar | real-valued row vector

Maximum value of the adapted taps, specified as a nonnegative real scalar or real-valued
row vector in volts. Specify as a scalar to apply to all the DFE taps or as a vector that has
the same length as the Initial tap weights (V).
Programmatic Use

• Use get_param(gcb,'MaximumTap') to view the current DFECDR Maximum DFE
tap value (V) value.

• Use set_param(gcb,'MaximumTap',value) to set DFECDR to a specific value of
Maximum DFE tap value (V).

Data Types: double

2 Blocks — Alphabetical List

2-28

CDR
Phase offset (symbol time) — Manual clock phase offset
0 (default) | real scalar in the range [−0.5, 0.5]

Manual clock phase offset to move the recovered clock phase, specified as a real scalar in
the range [-0.5, 0.5] in the fraction of symbol time. Phase offset (symbol time) is used
to manually shift the clock probability distribution function (PDF) for a better bit error
rate (BER).

Programmatic Use

• Use get_param(gcb,'PhaseOffset') to view the current DFECDR Phase offset
(symbol time) value.

• Use set_param(gcb,'PhaseOffset',value) to set DFECDR to a specific value of
Phase offset (symbol time).

Data Types: double

Reference offset (ppm) — Reference clock offset impairment
0 (default) | real scalar in the range [−300, 300]

Reference clock offset impairment, specified as a real scalar in the range [−300, 300] in
parts per million (ppm). Reference offset (ppm) is the deviation between transmitter
oscillator frequency and receiver oscillator frequency.

Programmatic Use

• Use get_param(gcb,'ReferenceOffset') to view the current DFECDR
Reference offset (ppm) value.

• Use set_param(gcb,'ReferenceOffset',value) to set DFECDR to a specific
value of Reference offset (ppm).

Data Types: double

Early/late count threshold — Early or late CDR count threshold to trigger
phase update
16 (default) | positive real integer ≥5

Early or late CDR count threshold to trigger a phase update, specified as a unitless
positive real integer ≥5. Increasing the value of Early/late count threshold provides a
more stable output clock phase at the expense of convergence speed. Because the bit

 DFECDR

2-29

decisions are made at the clock phase output, a more stable clock phase has a better bit
error rate (BER).

Early/late count threshold also controls the bandwidth of the CDR, which is
approximately calculated by using the equation:

Bandwidth
Symbol time Early/late threshold count Step

=

1

i i

Programmatic Use

• Use get_param(gcb,'Count') to view the current DFECDR Early/late count
threshold value.

• Use set_param(gcb,'Count',value) to set DFECDR to a specific value of Early/
late count threshold.

Data Types: double

Step (symbol time) — Clock phase resolution
0.0078 (default) | real scalar

Clock phase resolution of the recovered clock, specified as a real scalar in fraction of
symbol time. Step (symbol time) is the inverse of the number of phase adjustments in
the CDR. If the CDR has 128 steps of phase adjustment, the Step (symbol time) value is
1/128.

Programmatic Use

• Use get_param(gcb,'ClockStep') to view the current DFECDR Step (symbol
time) value.

• Use set_param(gcb,'ClockStep',value) to set DFECDR to a specific value of
Step (symbol time).

Data Types: double

Sensitivity (V) — Sampling latch metastability voltage
0 (default) | real scalar

Sampling latch metastability voltage, specified as a real scalar in volts. If the data sample
voltage lies within the region of (±Sensitivity (V)), there is a 50% probability of bit error.

2 Blocks — Alphabetical List

2-30

Programmatic Use

• Use get_param(gcb,'Sensitivity') to view the current DFECDR Sensitivity (V)
value.

• Use set_param(gcb,'Sensitivity',value) to set DFECDR to a specific value of
Sensitivity (V).

Data Types: double

See Also
CDR | serdes.CDR | serdes.DFECDR

Topics
“Clock and Data Recovery in SerDes System”

Introduced in R2019a

 DFECDR

2-31

Eye Diagram Scope
Display eye diagram of time-domain signal

Library
Comm Sinks

Description
The Eye Diagram block displays multiple traces of a modulated signal to produce an eye
diagram. You can use the block to reveal the modulation characteristics of the signal,
such as the effects of pulse shaping or channel distortions.

The Eye Diagram block has one input port. This block accepts a column vector or scalar
input signal. The block accepts a signal with the following data types: double, single, base
integer, and fixed point. All data types are cast as double before the block displays results.

2 Blocks — Alphabetical List

2-32

Dialog Box
To modify the eye diagram display, select View > Configuration Properties or click the

Configuration Properties button (). Then select the Main, 2D color histogram,
Axes, or Export tabs and modify the settings.

 Eye Diagram Scope

2-33

Visuals — Eye Diagram Properties
Main Tab

Display mode

Display mode of the eye diagram, specified as Line plot or 2D color histogram.
Selecting 2D color histogram makes the histogram tab available. This parameter is
tunable.

Enable measurements

Select this check box to enable eye measurements of the input signal.

2 Blocks — Alphabetical List

2-34

Show horizontal (jitter) histogram

Select this radio button to display the jitter histogram. This parameter is available when
Display mode is 2D color histogram and Enable measurements is selected. This
can also be accessed by using the histogram button drop down on the toolbar.

Show vertical (noise) histogram

Select this radio button to display the noise histogram. This parameter is available when
Display mode is 2D color histogram and Enable measurements is selected. This
can also be accessed by using the histogram button drop down on the toolbar.

Show horizontal bathtub curve

Select this check box to display the horizontal bathtub curve. This parameter is available
when Enable measurements is selected. This can also be accessed by using the bathtub
curve button on the toolbar.

Show vertical bathtub curve

Select this check box to display the vertical bathtub curve. This parameter is available
when Enable measurements is selected. This can also be accessed by using the bathtub
curve button on the toolbar.

Eye diagram to display

Select either Real only or Real and imaginary to display one or both eye diagrams.
To make eye measurements, this parameter must be Real only. This parameter is
tunable.

Color fading

Select this check box to fade the points in the display as the interval of time after they are
first plotted increases. The default value is false. This parameter is available only when
the Display mode is Line plot. This property is tunable.

Samples per symbol

Number of samples per symbol. Use with Symbols per trace to determine the number of
samples per trace. This parameter is tunable.

 Eye Diagram Scope

2-35

Sample offset

Sample offset, specified as a nonnegative integer smaller than the product of Samples
per symbol and Symbols per trace. The offset provides the number of samples to omit
before plotting the first point. This parameter is tunable.

Symbols per trace

Number of symbols plotted per trace, specified as a positive integer. This parameter is
tunable.

Traces to display

Number of traces plotted. This parameter is available only when the Display mode is
Line plot. This parameter is tunable.

2 Blocks — Alphabetical List

2-36

Axes Tab

Title

Label that appears above the eye diagram plot. By default, the plot has no title. This
parameter is tunable.

Show grid

Toggle this check box to turn the grid on and off. This parameter is tunable.

Y-limits (Minimum)

Minimum value of the y-axis. This parameter is tunable.

 Eye Diagram Scope

2-37

Y-limits (Maximum)

Maximum value of the y-axis. This parameter is tunable.

Real axis label

Text that the scope displays along the real axis. This parameter is tunable.

Imaginary axis label

Text that the scope displays along the imaginary axis. This parameter is tunable.

2D Histogram Tab
The 2D histogram tab is available when you click the histogram button or when the
display mode is set to 2D color histogram.

2 Blocks — Alphabetical List

2-38

Oversampling method

Oversampling method, specified as None, Input interpolation, or Histogram
interpolation. This parameter is tunable.

To plot eye diagrams as quickly as possible, set the Oversampling method to None. The
drawback to not oversampling is that the plots look pixelated when the number of
samples per trace is small. To create smoother, less-pixelated plots using a small number
of samples per trace, set the Oversampling method to Input interpolation or
Histogram interpolation. Input interpolation is the faster of the two
interpolation methods and produces good results when the signal-to-noise ratio (SNR) is
high. With a lower SNR, this oversampling method is not recommended because it

 Eye Diagram Scope

2-39

introduces a bias to the centers of the histogram ranges. Histogram interpolation is
not as fast as the other techniques, but it provides good results even when the SNR is low.

Color scale

Color scale of the histogram plot, specified as either Linear or Logarithmic. Set Color
scale to Logarithmic if certain areas of the eye diagram include a disproportionate
number of points. This parameter is tunable.

Reset

The toolbar contains a histogram reset button , which resets the internal histogram
buffers and clears the display. This button is not available when the display mode is set to
Line plot.

Export Tab

2 Blocks — Alphabetical List

2-40

Export measurements

Select this check box export the eye diagram measurements to the MATLAB® workspace.
This parameter is tunable.

Variable name

Specify the name of the variable to which the eye diagram measurements are saved. The
default is EyeData. This parameter is tunable. The data is saved as a structure having
these fields:

• MeasurementSettings
• Measurements
• JitterHistogram
• NoiseHistogram
• HorizontalBathtub
• VerticalBathtub
• BlockName

Style Dialog Box
In the Style dialog box, you can customize the style of the active display. You can change
the color of the figure containing the displays, the background and foreground colors of
display axes, and properties of lines in a display. To open this dialog box, select View >
Style.

 Eye Diagram Scope

2-41

Properties
Figure color

Specify the background color of the scope figure. By default, the figure color is black.

Axes colors

Specify the fill and line colors for the axes.

Line

Specify the line style, line width, and line color for the displayed signal.

Marker

Specify data point markers for the selected signal. This parameter is similar to the
Marker property for MATLAB Handle Graphics® plot objects.

2 Blocks — Alphabetical List

2-42

Specifier Marker Type
none No marker (default)

Circle
Square
Cross
Point
Plus sign
Asterisk
Diamond
Downward-pointing triangle
Upward-pointing triangle
Left-pointing triangle
Right-pointing triangle
Five-pointed star (pentagram)
Six-pointed star (hexagram)

Colormap

Specify the colormap of the histogram plots as one of these schemes: Parula, Jet, HSV,
Hot, Cool, Spring, Summer, Autumn, Winter, Gray, Bone, Copper, Pink, Lines, or
Custom. This parameter is active when the Eye Diagram is in Histogram mode. The
default is Hot. If you select Custom, a dialog box pops up from which you can enter code
to specify your own colormap.

Measurements
To open the measurements panel, click on the Eye Measurements button or select Tools
> Measurements > Eye Measurements from the toolbar menu.

Note

• For amplitude measurements, at least one bin per vertical histogram must reach 10
hits before the measurement is taken, ensuring higher accuracy.

 Eye Diagram Scope

2-43

• For time measurements, at least one bin per horizontal histogram must reach 10 hits
before the measurement is taken.

• When an eye crossing time measurement falls within the [-0.5/Fs, 0) seconds interval,
the time measurement wraps to the end of the eye diagram, i.e., the measurement
wraps by 2*Ts seconds (where Ts is the symbol time). For a complex signal case, the
analyze method issues a warning if the crossing time measurement of the in-phase
branch wraps while that of the quadrature branch does not (or vice versa). To avoid
the time-wrapping or a warning, add a half-symbol duration delay to the current value
in the MeasurementDelay property of the eye diagram object. This additional delay
repositions the eye in the approximate center of the scope.

Eye Levels — Amplitude level used to represent data bits

Eye level is the amplitude level used to represent data bits. For the displayed NRZ signal,
the levels are –1 V and +1 V. The eye levels are calculated by averaging the 2-D histogram
within the eye level boundaries.

2 Blocks — Alphabetical List

2-44

Eye Amplitude — Distance between eye levels

Eye amplitude is the distance in V between the mean value of two eye levels.

Eye Height — Statistical minimum distance between eye levels

Eye height is the distance between μ – 3σ of the upper eye level and μ + 3σ of the lower
eye level. μ is the mean of the eye level and σ is the standard deviation.

 Eye Diagram Scope

2-45

Vertical Opening — Distance between BER threshold points

The vertical opening is the distance between the two points that correspond to the BER
threshold. For example, for a BER threshold of 10–12, these points correspond to the 7σ
distance from each eye level.

2 Blocks — Alphabetical List

2-46

Eye SNR — Signal-to-noise ratio

The eye SNR is the ratio of the eye level difference to the difference of the vertical
standard deviations corresponding to each eye level:

SNR =
L1− L0
σ1− σ0

,

where L1 and L0 represent the means of the upper and lower eye levels and σ1 and σ0
represent their standard deviations.

Q Factor — Quality factor

The Q factor is calculated using the same formula as the Eye SNR. However, the standard
deviations of the vertical histograms are replaced with those computed with the dual-
Dirac analysis.

Crossing Levels — Amplitude levels for eye crossings

The crossing levels are the amplitude levels at which the eye crossings occur.

 Eye Diagram Scope

2-47

Crossing Times — Times for which crossings occur

The crossing times are the times at which the crossings occur. The times are computed as
the mean values of the horizontal (jitter) histograms.

2 Blocks — Alphabetical List

2-48

Eye Delay — Mean time between eye crossings

Eye delay is the midpoint between the two crossing times.

 Eye Diagram Scope

2-49

Eye Width — Statistical minimum time between eye crossings

Eye width is the horizontal distance between μ + 3σ of the left crossing time and μ – 3σ of
the right crossing time. μ is the mean of the jitter histogram and σ is the standard
deviation.

2 Blocks — Alphabetical List

2-50

Horizontal Opening — Time between BER threshold points

The horizontal opening is the distance between the two points that correspond to the BER
threshold. For example, for a 10–12 BER, these two points correspond to the 7σ distance
from each crossing time.

 Eye Diagram Scope

2-51

Rise Time — Time to transition from low to high

Rise time is the mean time between the low and high thresholds defined in the eye
diagram. The default thresholds are 10% and 90% of the eye amplitude.

2 Blocks — Alphabetical List

2-52

Fall Time — Time to transition from high to low

Fall time is the mean time between the high and low thresholds defined in the eye
diagram. The default thresholds are 10% and 90% of the eye amplitude.

 Eye Diagram Scope

2-53

Deterministic Jitter — Deterministic deviation from ideal signal timing

The deterministic jitter (DJ) is the distance between the two peaks of the dual-Dirac
histograms. The probability density function (PDF) of DJ is composed of two delta
functions.

2 Blocks — Alphabetical List

2-54

Random Jitter — Random deviation from ideal signal timing

The random jitter (RJ) is the Gaussian unbounded jitter component. The random
component of jitter is modeled as a zero-mean Gaussian random variable with a specified
standard-deviation, σ. The random jitter is computed as:

RJ = (QL + QR)σ ,

where

Q = 2erfc−1 2BER
ρ .

BER is the specified BER threshold. ρ is the amplitude of the left and right Dirac function,
which is determined from the bin counts of the jitter histograms.

 Eye Diagram Scope

2-55

Total Jitter — Deviation from ideal signal timing

Total jitter (TJ) is the sum of the deterministic and random jitter, such that TJ = DJ + RJ.

2 Blocks — Alphabetical List

2-56

The total jitter PDF is the convolution of the DJ PDF and the RJ PDF.

 Eye Diagram Scope

2-57

RMS Jitter — Standard deviation of jitter

RMS jitter is the standard deviation of the jitter calculated in the horizontal (jitter)
histogram at the decision boundary.

2 Blocks — Alphabetical List

2-58

Peak-to-Peak Jitter — Distance between extreme data points of histogram

Peak-to-peak jitter is the maximum horizontal distance between the left and right nonzero
values in the horizontal histogram of each crossing time.

 Eye Diagram Scope

2-59

Measurement Settings
To change measurement settings, first select Enable measurements. Then, in the Eye
Measurements pane, click the arrow next to Settings. You can control these
measurement settings.

Eye level boundaries — Time range for calculating eye levels

[40 60] (default) | two-element vector

Time range for calculating eye levels, specified as a two-element vector. These values are
expressed as a percentage of the symbol duration. Tunable.

2 Blocks — Alphabetical List

2-60

Decision boundary — Amplitude level threshold

0 (default) | scalar

Amplitude level threshold in V, specified as a scalar. This parameter separates the
different signaling regions for horizontal (jitter) histograms. This parameter is tunable,
but the jitter histograms reset when the parameter changes.

For non-return-to-zero (NRZ) signals, set Decision boundary to 0. For return-to-zero
(RZ) signals, set Decision boundary to half the maximum amplitude.

Rise/Fall Thresholds — Amplitude levels of the rise and fall transitions

[10 90] (default) | two-element vector

Amplitude levels of the rise and fall transitions, specified as a two-element vector. These
values are expressed as a percentage of the eye amplitude. This parameter is tunable, but
the crossing histograms of the rise and fall thresholds reset when the parameter changes.

Hysteresis — Amplitude tolerance of the horizontal crossings

0 (default) | scalar

Amplitude tolerance of the horizontal crossings in V, specified as a scalar. Increase
hysteresis to provide more tolerance to spurious crossings due to noise. This parameter is
tunable, but the jitter and the rise and fall histograms reset when the parameter changes.

BER threshold — BER used for eye measurements

1e-12 (default) | nonnegative scalar from 0 to 0.5

BER used for eye measurements, specified as a nonnegative scalar from 0 to 0.5. The
value is used to make measurements of random jitter, total jitter, horizontal eye openings,
and vertical eye openings. Tunable.

Bathtub BERs — BER values used to calculate openings of bathtub curves

[0.5 0.1 0.01 0.001 0.0001 1e-05 1e-06 1e-07 1e-08 1e-09 1e-10 1e-11
1e-12] (default) | vector

BER values used to calculate openings of bathtub curves, specified as a vector whose
elements range from 0 to 0.5. Horizontal and vertical eye openings are calculated for

 Eye Diagram Scope

2-61

each of the values specified by this parameter. To enable this parameter, select Show
horizontal bathtub curve, Show vertical bathtub curve, or both. Tunable.

Measurement delay — Duration of initial data discarded from measurements

0 (default) | nonnegative scalar

Duration of initial data discarded from measurements, in seconds, specified as a
nonnegative scalar.

Examples

View Eye Diagram

Display the eye diagram of a filtered QPSK signal using the Eye Diagram block.

Load the doc_eye_diagram_scope model from the MATLAB command prompt.

doc_eye_diagram_scope

Run the model and observe that two symbols are displayed.

2 Blocks — Alphabetical List

2-62

matlab:doc_eye_diagram_scope

Open the configuration parameters dialog box. Change the Symbols per trace parameter
to 4. Run the simulation and observe that four symbols are displayed.

 Eye Diagram Scope

2-63

Try changing the Raised Cosine Transmit Filter parameters or changing additional Eye
Diagram parameters to see their effects on the eye diagram.

Histogram Plots

Display histogram plots of a noisy GMSK signal.

Load the doc_eye_diagram_gmsk model from the MATLAB command prompt.

doc_eye_diagram_gmsk

2 Blocks — Alphabetical List

2-64

matlab:doc_eye_diagram_gmsk

Run the model. The eye diagram is configured to show a histogram without interpolation.

 Eye Diagram Scope

2-65

The lack of interpolation results in a plot having piecewise-continuous behavior.

Open the 2D Histogram tab of the Configuration Properties dialog box. Set the
Oversampling method to Input interpolation. Run the model.

2 Blocks — Alphabetical List

2-66

The interpolation smooths the eye diagram.

On the AWGN Channel block, change SNR (dB) from 25 to 10. Run the model.

 Eye Diagram Scope

2-67

Observe that vertical striping is present in the eye diagram. This striping is the result of
input interpolation, which has limited accuracy in low-SNR conditions.

Set the Oversampling method to Histogram interpolation. Run the model.

2 Blocks — Alphabetical List

2-68

The eye diagram plot now renders accurately because the histogram interpolation method
works for all SNR values. This method is not as fast as the other techniques and results in
increased execution time.

Visualize Random and Deterministic Jitter

The doc_visualize_jitter model generates bipolar data, adds deterministic and
random jitter, applies white noise, and displays the resulting eye diagram.

 Eye Diagram Scope

2-69

No Jitter Added

In the Channel Model with Jitter block, set the Deterministic jitter parameter to
0 and set the RMS jitter parameter to 0. When the model runs, the signal shows clean
crossings as there is no jitter.

2 Blocks — Alphabetical List

2-70

Deterministic Jitter Added

Set the Deterministic jitter parameter to 100e-12. Run the model to show the effect of
the deterministic jitter. The separation between the two peaks in the jitter histogram
indicates the deterministic jitter.

 Eye Diagram Scope

2-71

RMS Jitter Added

Set the Deterministic jitter parameter to 0 and set the RMS jitter parameter to
50e-12. Run the model to show the effect of the RMS jitter. The fuzziness around each of
the crossings indicates the RMS jitter.

2 Blocks — Alphabetical List

2-72

Deterministic and RMS Jitter Added

Set the Deterministic jitter parameter to 50e-12 and set the RMS jitter parameter to
20e-12. Run the model to show the combined effects of both jitter types.

 Eye Diagram Scope

2-73

More About

Using Eye Diagram in Conditionally Executed Subsystems
When an Eye Diagram block is placed in a conditionally executed subsystem, for example
in a triggered or enabled subsystem:

• Input size must be an integer multiple of SamplesPerSymbol * SymbolsPerTrace

2 Blocks — Alphabetical List

2-74

• Sample offset must be zero
• The rightmost part of the display is intentionally omitted. This figure compares typical

eye diagram display when placed in a normal system versus one placed in a
conditionally executed subsystem.

Eye Diagram Plot in Normal System Eye Diagram Plot in Conditionally
Executed Subsystem

In a regular Eye Diagram, the rightmost
part is a line between the last sample of
a trace and the first sample of the next
trace.

In conditionally executed subsystems,
these traces may be non-contiguous,
thus this rightmost segment could
corrupt the display and is omitted.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block is excluded from the generated code when code generation is performed on a
system containing this block.

 Eye Diagram Scope

2-75

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used for simulation visibility in subsystems that generate HDL code, but
is not included in the hardware implementation.

See Also
Blocks

Objects

Introduced in R2014a

2 Blocks — Alphabetical List

2-76

FFE
Models a feed-forward equalizer
Library: SerDes Toolbox / Datapath Blocks

Description
The FFE block applies a feed-forward equalizer (FFE) as a symbol-spaced finite-impulse
response (FIR) filter to a sample-by-sample input signal or an impulse response vector
input signal. This filtering reduces distortions due to channel loss impairments.

Ports

Input
WaveIn — Input baseband signal
scalar | vector

Input baseband signal. The input signal can be a sample-by-sample signal specified as a
scalar, or an impulse response vector signal.
Data Types: double

Output
WaveOut — Filtered channel output
scalar | vector

Filtered channel output. If the input signal is a sample-by-sample signal specified as a
scalar, the output is also scalar. If the input signal is an impulse response vector signal,
the output is also a vector.
Data Types: double

 FFE

2-77

Parameters
Mode — FFE operating mode
Fixed (default) | Off

FFE operating mode:

• Off — FFE is bypassed and the input waveform remains unchanged.
• Fixed — FFE applies the FFE tap weights specified in Tap weights to input

waveform.

Programmatic Use

• Use get_param(gcb,'Mode') to view the current FFE Mode.
• Use set_param(gcb,'Mode',value) to set FFE to a specific Mode.

Tap weights — FFE tap weights
[0,1,0,0,0] (default) | row vector

FFE tap weights, specified as a row vector in volts. The length of the vector specifies the
number of taps. The vector element value specifies the strength of the tap at that element
position. The tap with the largest magnitude is the main tap and therefore defines the
number of pre- and post-cursor taps.

Programmatic Use

• Use get_param(gcb,'TapWeights') to view the current FFE Tap weights.
• Use set_param(gcb,'TapWeights',value) to set FFE to a specific Tap weights

vector.

Data Types: double

Normalize — Normalize tap weights
on (default) | fff

Select to normalize tap weight vectors so that the sum of the absolute values of the Tap
weights vector elements is one.

IBIS-AMI parameters — Choose parameters to include in IBIS-AMI model
Mode | Tap weights

2 Blocks — Alphabetical List

2-78

Choose which parameters to include in IBIS-AMI models. By default, both parameters are
selected.

If you deselect a parameter, the parameter is removed from the AMI files, effectively
hard-coding the parameter to its current value. For example, if Mode is set to Fixed and
you clear the check box for Mode under IBIS-AMI parameters, the value of Mode is
hard-coded to Fixed.

See Also
CTLE | serdes.CTLE | serdes.FFE

Introduced in R2019a

 FFE

2-79

PassThrough
Propagates baseband signal without modification
Library: SerDes Toolbox / Datapath Blocks

Description
The PassThrough block passes the input signal without any modification. This block is
used as a place holder within a SerDes system and as a template for user-authored blocks
for use in SerDes Toolbox.

Ports

Input
WaveIn — Input baseband signal
scalar | vector

Input baseband signal, can be a sample-by-sample signal specified as a scalar, or an
impulse response vector signal.
Data Types: double

Output
WaveOut — Unchanged output voltage
scalar | vector

Unchanged output voltage. The PassThrough block does not modify the input voltage in
any way and returns the same output as the input.
Data Types: double

2 Blocks — Alphabetical List

2-80

See Also
CTLE | DFECDR | FFE | serdes.CTLE | serdes.DFECDR | serdes.FFE |
serdes.PassThrough

Topics
“Managing AMI Parameters”

Introduced in R2019a

 PassThrough

2-81

SaturatingAmplifier
Models a saturation amplifier
Library: SerDes Toolbox / Datapath Blocks

Description
The SaturatingAmplifier block scales the input waveform according to a voltage in vs.
voltage out response. The voltage in vs. voltage out response is specified either by the
soft clipping response defined by Limit and Linear Gain, or by the VinVout matrix. The
SaturatingAmplifier block applies memoryless nonlinearity to incoming waveform.

Ports

Input
WaveIn — Input baseband signal
scalar | vector

Input baseband signal, can be a sample-by-sample signal specified as a scalar, or an
impulse response vector signal.
Data Types: double

Output
WaveOut — Clipped output voltage
scalar | vector

Clipped output voltage, as specified by the SaturatingAmplifier block. If the input signal is
a sample-by-sample signal specified as a scalar, the output is also scalar. If the input
signal is an impulse response vector signal, the output is also a vector.
Data Types: double

2 Blocks — Alphabetical List

2-82

Parameters
Mode — Amplifier operating mode
On (default) | Off

Amplifier operating mode:

• Off — SaturatingAmplifier is bypassed and the input waveform remains unchanged.
• On — SaturatingAmplifier scales the input waveform according to a voltage in vs.

voltage out response.

Programmatic Use

• Use get_param(gcb,'Mode') to view the current saturating amplifier operating
Mode.

• Use set_param(gcb,'Mode',value) to set amplifier to a specific Mode.

Specification — Input specification for limiting amplifier output
'Limit and Linear Gain' (default) | 'VinVout'

Input specification for limiting amplifier output:

• 'Limit and Linear Gain' — Creates a soft clipping voltage in vs. voltage out
response with the values specified in Limit and Linear Gain.

• 'VinVout' — Generates output voltages corresponding to input voltage specified in
VinVout. If any input voltage point falls outside the specified values, the output for
that particular input voltage is interpolated.

Programmatic Use

• Use get_param(gcb,'Specification') to view the current Specification of
saturating amplifier.

• Use set_param(gcb,'Specification',value) to set saturating amplifier to a
specific Specification.

Data Types: char

Limit — Clipping voltage for the limiting amplifier
1.2 (default) | real positive scalar

Clipping voltage for the limiting amplifier, specified as a real positive scalar in V.

 SaturatingAmplifier

2-83

Dependencies

This parameter is only available when Specification is selected as 'Limit and Linear
Gain'

Programmatic Use

• Use get_param(gcb,'Limit') to view the current value of Limit of saturating
amplifier.

• Use set_param(gcb,'Limit',value) to set Limit to a specific value.

Data Types: double

LinearGain — Amplifier gain in the linear region
1 (default) | real positive scalar

Amplifier gain in the linear region, specified as a unitless real positive scalar.
Dependencies

This parameter is only available when Specification is selected as 'Limit and Linear
Gain'

Programmatic Use

• Use get_param(gcb,'LinearGain') to view the current value of LinearGain of
saturating amplifier.

• Use set_param(gcb,'LinearGain',value) to set LinearGain to a specific value.

Data Types: double

VinVout — Input and corresponding output voltage response table
N×2 matrix

Input and corresponding output voltage response table, specified as an N×2 matrix in
volts.
Dependencies

This parameter is only available when Specification is selected as 'VinVout'
Programmatic Use

• Use get_param(gcb,'VinVout') to view the current VinVout table value of
saturating amplifier.

2 Blocks — Alphabetical List

2-84

• Use set_param(gcb,'VinVout',value) to set VinVout to a specific value.

Data Types: double

IBIS-AMI parameters — Choose parameters to be included in IBIS-AMI model
Mode

Choose which parameters to include in IBIS-AMI models. The only option is , which is
selected by default.

If you clear the check box for Mode, the current value of Mode is hard-coded into the
parameter.

See Also
AGC | VGA | serdes.AGC | serdes.SaturatingAmplifier | serdes.VGA

Introduced in R2019a

 SaturatingAmplifier

2-85

Stimulus
Set pseudorandom binary sequence (PRBS) pattern and number of symbols to simulate in
SerDes model
Library: SerDes Toolbox / Utilities

Description
The Stimulus sets the PRBS pattern and the number of symbols to simulate in a SerDes
Toolbox model.

Ports

Output
WaveOut — Output signal with specific PRBS pattern
vector

Output pattern with a specific PRBS pattern, specified as a vector.
Data Types: double

Parameters
PRBS — Order of the pseudorandom binary sequence
11 (default) | 7 | 9 | 13 | 15 | 20 | 23 | 31 | 47

Order of the pseudorandom binary sequence.

Dependencies

This parameter is only tunable when Custom stimulus option is deselected.

2 Blocks — Alphabetical List

2-86

Programmatic Use

• Use get_param(gcb,'PRBS') to view the current value of PRBS.
• Use set_param(gcb,'PRBS',value) to set PRBS to a specific value.

Number of symbols — Length of PRBS pattern used for simulation
2000 (default) | positive integer

Length of the PRBS pattern used for simulation, specified as a positive integer.

Dependencies

This parameter is only tunable when Custom stimulus option is deselected.

Programmatic Use

• Use get_param(gcb,'NumberOfSymbols') to view the current value of Number
of symbols.

• Use set_param(gcb,'NumberOfSymbols',value) to set Number of symbols to a
specific value.

Custom stimulus — Select to input a custom stimulus
button

Select to input a custom stimulus. By default, this option is deselected.

If you enable this option, you can manually enter a vector containing the input voltages at
sample interval spacing as your stimulus.
Example: [zeros(1,(SymbolTime/SampleInterval)),ones(1,(SymbolTime/
SampleInterval))]-0.5

See Also
Analog Channel | Configuration

Introduced in R2019a

 Stimulus

2-87

VGA
Models a variable gain amplifier
Library: SerDes Toolbox / Datapath Blocks

Description
The VGA block scales the amplitude of the input waveform based on a gain specified by
the user.

Ports

Input
WaveIn — Input signal
scalar | vector

Input signal to be scaled, specified as a scalar or vector.
Data Types: double

Output
WaveOut — Scaled output signal
scalar | vector

Scaled output signal, returned as a scalar or vector corresponding to the input signal.
Data Types: double

2 Blocks — Alphabetical List

2-88

Parameters
Mode — VGA operating mode
On (default) | Off

VGA operating mode:

• Off — VGA is bypassed and the input waveform remains unchanged.
• On — VGA scales the input waveform according to the specified Gain.

Programmatic Use

• Use get_param(gcb,'Mode') to view the current VGA Mode.
• Use set_param(gcb,'Mode',value) to set VGA to a specific Mode.

Gain — Multiplicative gain used to scale the input waveform
1 (default) | scalar

Multiplicative gain used to scale the input waveform, specified as a unitless scalar.

Programmatic Use

• Use get_param(gcb,'Gain') to view the current value of Gain.
• Use set_param(gcb,'Gain',value) to set VGA Gain to a specific value.

Data Types: double

IBIS-AMI parameters — Choose parameters to be included in IBIS-AMI model
Mode | Gain

Choose which parameters to include in IBIS-AMI models. By default, both parameters are
selected.

If you deselect a parameter, the parameter is removed from the AMI files, effectively
hard-coding the parameter to its current value. For example, if Gain is set to 5 and you
clear the check box for Gain under IBIS-AMI parameters, the value of Gain is hard-
coded to 5.

See Also
AGC | serdes.AGC | serdes.VGA

 VGA

2-89

Introduced in R2019a

2 Blocks — Alphabetical List

2-90

SerDes Apps — Alphabetical List

3

SerDes Designer
Design and analyze SerDes systems for export to Simulink, MATLAB and IBIS-AMI

Description
The SerDes Designer app generates the SerDes Designer tree required to generate
IBIS-AMI models. Start from the app to develop initial SerDes architecture using
statistical analysis and manage developed models.

Using this app, you can:

• Create fully compliant IBIS(Input/Output Buffer Information Specification)-
AMI(Algorithmic Modeling Interface) models and perform statistical analysis.

• Generate MATLAB scripts for further customization and statistical and time domain
analysis.

• Export Simulink models for further customization, statistical and time domain
analysis, and IBIS-AMI model generation.

To know more about this app, see “Design SerDes System and Export IBIS-AMI Model”.

Open the SerDes Designer App
• MATLAB Toolstrip: In the Apps tab, under Signal Processing and

Communications, click the app icon.
• MATLAB command prompt: Enter serdesDesigner.

Examples
• “Design SerDes System and Export IBIS-AMI Model”
• “PCIe4 Transmitter/Receiver IBIS-AMI Model”

3 SerDes Apps — Alphabetical List

3-2

Programmatic Use
serdesDesigner opens a new session of the SerDes Designer app, enabling you to
design and analyze a SerDes system.

serdesDesigner(serdesDesign) opens the SerDes Designer app and loads the
serdesDesign file saved from the previous session.

Limitations
IBIS-AMI codegen is not supported in MAC.

More About

Configuring SerDes System
The SerDes Designer app provides built-in configuration settings for customizing your
SerDes system. From the app toolstrip, go to CONFIGURATION tab, and select relevant
settings.

Parameter Name Default Value Description
Symbol Time (ps) 100
Samples per Symbol 16 Choose between 8, 16, 32,

64, and 128
Target BER 1e-6
Modulation NRZ Choose between NRZ and

PAM4.
Signalling Signaling Choose between

Differential and Single
Ended.

Setting Up Transmitter and Receiver
Use the AnalogOut subsystem to set up the transmitter.

 SerDes Designer

3-3

Use the AnalogIn subsystem to set up the receiver.

From the app toolstrip, go to the BLOCKS tab, and use the relevant blocks. The app
provides the following building blocks:

• FFE
• CTLE
• DFECDR
• CDR
• AGC
• VGA
• SaturatingAmplifier
• PassThrough

Statistical Analysis
From the app toolstrip, go to ANALYSIS tab, and select Add Plots to perform statistical
(Init) analysis. By default, Auto-Analyze is selected, and plot results are automatically
updated with each change in the SerDes system. You can deselect the Auto-Analyze, and
update the plot at your preference by clicking the Analyze button.

You can view the following plots from the app:

• Pulse Response
• Statistical Eye
• PRBS Waveform
• Contours
• Bathtub
• Report
• BER

Exporting SerDes System
From the app toolstrip, go to EXPORT tab. You can either:

• Export SerDes System to Simulink

3 SerDes Apps — Alphabetical List

3-4

• Generate MATLAB Code for SerDes System
• Make IBIS-AMI Model for SerDes System

Extended Support with Other Compilers and Products

Note

• If you have Simulink license, you can export Simulink and IBIS-AMI models from the
app.

• If you have a supported compiler, you can compile the SerDes system in that compiler
from the app. For a list of supported compilers, see Supported and Compatible
Compilers.

• If you have the following licenses: MATLAB Coder™, Simulink Coder, and Embedded
Coder®, you can keep your C files during .dll file generation. Otherwise, your C files
will be deleted during the .dll file generation.

See Also
Blocks
AGC | CDR | CTLE | DFECDR | FFE | PassThrough | SaturatingAmplifier | VGA

Objects
serdes.AGC | serdes.CDR | serdes.CTLE | serdes.DFECDR | serdes.FFE |
serdes.PassThrough | serdes.SaturatingAmplifier | serdes.VGA

Topics
“Design SerDes System and Export IBIS-AMI Model”
“PCIe4 Transmitter/Receiver IBIS-AMI Model”

External Websites
Supported and Compatible Compilers

Introduced in R2019a

 SerDes Designer

3-5

https://www.mathworks.com/support/compilers.html
https://www.mathworks.com/support/compilers.html
https://www.mathworks.com/support/compilers.html

